Mapping classifiers and datasets
作者:
Highlights:
•
摘要
Given the posterior probability estimates of 14 classifiers on 38 datasets, we plot two-dimensional maps of classifiers and datasets using principal component analysis (PCA) and Isomap. The similarity between classifiers indicate correlation (or diversity) between them and can be used in deciding whether to include both in an ensemble. Similarly, datasets which are too similar need not both be used in a general comparison experiment. The results show that (i) most of the datasets (approximately two third) we used are similar to each other, (ii) multilayer perceptrons and k-nearest neighbor variants are more similar to each other than support vector machine and decision tree variants, (iii) the number of classes and the sample size has an effect on similarity.
论文关键词:Classifiers,Datasets,No free lunch theorem,PCA,Isomap
论文评审过程:Available online 22 September 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.09.027