Autonomous rule induction from data with tolerances in customer relationship management

作者:

Highlights:

摘要

In this paper, application of the rough set theory (RST) to feature selection in customer relationship management (CRM) is introduced. Compared to other methods, the RST approach has the advantage of combining both qualitative and quantitative information in the decision analysis, which is extremely important for CRM. Automated decision support for CRM has been proposed in recent years. However, little work has been devoted to the development of computer-based systems to support CRM in rule induction. This paper presents a novel rough set based algorithm for automated decision support for CRM. Particularly, the approach is capable to handle real numbers instead of integer numbers through introduction of converted numbers involving tolerances. Being unique and useful in solving CRM problems, an alternative rule extraction algorithm (AREA) is presented for discovering preference-based rules according to the reducts which contain the maximum of strength index (SI) in the same case, where the data with tolerance. The empirical data set associated with CRM has proven the validity and reliability of these approaches. This research thus contributes to developing and validating a useful approach to automated decision support for CRM. This paper forms the basis for solving many other similar problems that occur in the service industry.

论文关键词:Rough set theory,Rule induction,Data with tolerance,Feature selection,Customer relationship management

论文评审过程:Available online 7 October 2010.

论文官网地址:https://doi.org/10.1016/j.eswa.2010.09.098