Identifying product failure rate based on a conditional Bayesian network classifier
作者:
Highlights:
•
摘要
To identify the product failure rate grade under diverse configuration and operation conditions, a new conditional Bayesian networks (CBN) model is brought forward. By indicating the conditional independence relationship between attribute variables given the target variable, this model could provide an effective approach to classify the grade of failure rate. Furthermore, on the basis of the CBN model, the procedure of building product failure rate grade classifier is elaborated with modeling and application. At last, a case study is carried out and the results show that, with comparison to other Bayesian networks classifiers and traditional decision tree C4.5, the CBN model not only increases the total classification accuracy, but also reduces the complexity of network structure.
论文关键词:Maintenance management,Failure rate,Classifier,Bayesian network,Conditional independence
论文评审过程:Available online 7 October 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.09.146