Neural networks and fuzzy logic-based spark advance control of SI engines
作者:
Highlights:
•
摘要
In SI engines, spark advance (SA) needs to be controlled to get Maximum Brake Torque (MBT) timing. Spark advance can be controlled either by open loop or by closed loop controller. The open loop controller requires extensive testing and calibration of engine, to develop look up tables. In closed loop controller, empirical rules relating variables deduced from cylinder pressure are used. One of such empirical rules is to fix location of peak pressure (LPP) at a desired value of the crank angle. In the present work, a combined neural network and fuzzy logic-based control scheme is designed for SA control to get MBT timing. The fuzzy logic controller is designed to maintain LPP of SI engine close to 16° ATDC. The controller works in conjunction with Recurrent Neural Network model for cylinder pressure identification. LPP is estimated from cylinder pressure curve reconstructed using neural network model and is used as feedback signal to fuzzy logic controller. The simulations have been carried out to test the performance of the combined neural network and fuzzy logic-based control strategy. The simulation results show that the proposed strategy can quite satisfactorily control LPP to its desired value.
论文关键词:Spark advance,Location of peak pressure,SI engines,Neural networks,Fuzzy logic
论文评审过程:Available online 13 December 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.12.032