A new linguistic MCDM method based on multiple-criterion data fusion
作者:
Highlights:
•
摘要
Multiple-criteria decision-making (MCDM) is concerned with the ranking of decision alternatives based on preference judgements made on decision alternatives over a number of criteria. First, taking advantage of data fusion technology to comprehensively consider each criterion data is a reasonable idea to solve the MCDM problem. Second, in order to efficiently handle uncertain information in the process of decision making, some well developed mathematical tools, such as fuzzy sets theory and Dempster Shafer theory of evidence, are used to deal with MCDM. Based on the two main reasons above, a new fuzzy evidential MCDM method under uncertain environments is proposed. The rating of the criteria and the importance weight of the criteria are given by experts’ judgments, represented by triangular fuzzy numbers. Then, the weights are transformed into discounting coefficients and the ratings are transformed into basic probability assignments. The final results can be obtained through the Dempster rule of combination in a simple and straight way. A numerical example to select plant location is used to illustrate the efficiency of the proposed method.
论文关键词:MCDM,Dempster–Shafer evidence theory,Fuzzy sets theory
论文评审过程:Available online 23 December 2010.
论文官网地址:https://doi.org/10.1016/j.eswa.2010.12.016