Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting

作者:

Highlights:

摘要

Electricity demand forecasting plays an important role in electric power systems planning. In this paper, nonlinear time series modeling technique is applied to analyze electricity demand. Firstly, the phase space, which describes the evolution of the behavior of a nonlinear system, is reconstructed using the delay embedding theorem. Secondly, the largest Lyapunov exponent forecasting method (LLEF) is employed to make a prediction of the chaotic time series. In order to overcome the limitation of LLEF, a weighted largest Lyapunov exponent forecasting method (WLLEF) is proposed to improve the prediction accuracy. The particle swarm optimization algorithm (PSO) is used to determine the optimal weight parameters of WLLEF. The trend adjustment technique is used to take into account the seasonal effects in the data set for improving the forecasting precision of WLLEF. A simulation is performed using a data set that was collected from the grid of New South Wales, Australia during May 14–18, 2007. The results show that chaotic characteristics obviously exist in electricity demand series and the proposed prediction model can effectively predict the electricity demand. The mean absolute relative error of the new prediction model is 2.48%, which is lower than the forecasting errors of existing methods.

论文关键词:Chaotic time series,Particle swarm optimization algorithm,Trend adjustment

论文评审过程:Available online 24 January 2011.

论文官网地址:https://doi.org/10.1016/j.eswa.2011.01.037