Scalable processing of continuous K-nearest neighbor queries with uncertain velocity
作者:
Highlights:
•
摘要
Continuous K-nearest neighbor (CKNN) query is an important type of spatio-temporal queries. Given a time interval [ts, te] and a moving query object q, a CKNN query is to find the K-nearest neighbors (KNNs) of q at each time instant within [ts, te]. In this paper, we focus on the issue of scalable processing of CKNN queries over moving objects with uncertain velocity. Due to the large amount of CKNN queries that need to be evaluated concurrently, efficiently processing such queries inevitably becomes more complicated. We propose an index structure, namely the CI-tree, to predetermine and organize the candidates for each query issued by the user from anywhere and anytime. When the CKNN queries are evaluated, their corresponding candidates can be rapidly retrieved by traversing the CI-tree so that the processing time is greatly reduced. A comprehensive set of experiments is performed to demonstrate the effectiveness and the efficiency of the CI-tree.
论文关键词:Continuous K-nearest neighbor query,Spatio-temporal queries,K-nearest neighbors,Moving query object,Moving objects
论文评审过程:Available online 25 January 2011.
论文官网地址:https://doi.org/10.1016/j.eswa.2011.01.028