A differentiated one-class classification method with applications to intrusion detection

作者:

Highlights:

摘要

Intrusion detection has become an indispensable tool to keep information systems safe and reliable. Most existing anomaly intrusion detection techniques treat all types of attacks as equally important without any differentiation of the risk they pose to the information system. Although detection of all intrusions is important, certain types of attacks are more harmful than others and their detection is critical to protection of the system. This paper proposes a new one-class classification method with differentiated anomalies to enhance intrusion detection performance for harmful attacks. We also propose new extracted features for host-based intrusion detection based on three viewpoints of system activity such as dimension, structure, and contents. Experiments with simulated dataset and the DARPA 1998 BSM dataset show that our differentiated intrusion detection method performs better than existing techniques in detecting specific type of attacks. The proposed method would benefit even other applications in anomaly detection area beyond intrusion detection.

论文关键词:Anomaly intrusion detection,Support vector data description,One-class classification,Differentiated detection

论文评审过程:Available online 6 July 2011.

论文官网地址:https://doi.org/10.1016/j.eswa.2011.06.033