Texture extraction: An evaluation of ridgelet, wavelet and co-occurrence based methods applied to mammograms
作者:
Highlights:
•
摘要
Image processing algorithms can be used in computer-aided diagnosis systems to extract features directly from digitized mammograms. Typically, two classes of features are extracted from mammograms with these algorithms, namely morphological and non-morphological features. Image texture analysis is an important technique that represents gray level properties of images used to describe non-morphological features. This technique has shown to be a promising technique in analyzing mammographic lesions caused by masses. In this paper, we evaluate texture classification using features derived from co-occurrence matrices, wavelet and ridgelet transforms of mammographic images. In particular, we propose a false positive reduction in computer-aided detection of masses. The data set consisted of 120 cranio-caudal mammograms, half containing a mass, rated as abnormal images, and half with no lesions. The following texture descriptors were then calculated to analyze the regions of interest (ROIs) texture patterns: entropy, energy, sum average, sum variance, and cluster tendency. To select the best set of features for each method, we applied a genetic algorithm (GA). In the ROIs classification stage, we used the Random Forest algorithm, a data mining technique that separates the data into non-overlapping segments. Experimental results showed that the best classification rates were obtained with the wavelet-based feature extraction using GA for selection of the most relevant features, giving an AUC = 0.90.
论文关键词:Mammography,CADx,Texture extraction,Co-occurrence,Wavelet and ridgelet
论文评审过程:Available online 8 March 2012.
论文官网地址:https://doi.org/10.1016/j.eswa.2012.03.020