Interactive mining of high utility patterns over data streams

作者:

Highlights:

摘要

High utility pattern (HUP) mining over data streams has become a challenging research issue in data mining. When a data stream flows through, the old information may not be interesting in the current time period. Therefore, incremental HUP mining is necessary over data streams. Even though some methods have been proposed to discover recent HUPs by using a sliding window, they suffer from the level-wise candidate generation-and-test problem. Hence, they need a large amount of execution time and memory. Moreover, their data structures are not suitable for interactive mining. To solve these problems of the existing algorithms, in this paper, we propose a novel tree structure, called HUS-tree (high utility stream tree) and a new algorithm, called HUPMS (high utility pattern mining over stream data) for incremental and interactive HUP mining over data streams with a sliding window. By capturing the important information of stream data into an HUS-tree, our HUPMS algorithm can mine all the HUPs in the current window with a pattern growth approach. Furthermore, HUS-tree is very efficient for interactive mining. Extensive performance analyses show that our algorithm is very efficient for incremental and interactive HUP mining over data streams and significantly outperforms the existing sliding window-based HUP mining algorithms.

论文关键词:Data mining,Knowledge discovery,High utility pattern mining,Interactive mining,Incremental mining,Data streams

论文评审过程:Available online 1 April 2012.

论文官网地址:https://doi.org/10.1016/j.eswa.2012.03.062