A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector
作者:
Highlights:
•
摘要
Data envelopment analysis (DEA) is a linear programming based non-parametric technique for evaluating the relative efficiency of homogeneous decision making units (DMUs) on the basis of multiple inputs and multiple outputs. There exist radial and non-radial models in DEA. Radial models only deal with proportional changes of inputs/outputs and neglect the input/output slacks. On the other hand, non-radial models directly deal with the input/output slacks. The slack-based measure (SBM) model is a non-radial model in which the SBM efficiency can be decomposed into radial, scale and mix-efficiency. The mix-efficiency is a measure to estimate how well the set of inputs are used (or outputs are produced) together. The conventional mix-efficiency measure requires crisp data which may not always be available in real world applications. In real world problems, data may be imprecise or fuzzy. In this paper, we propose (i) a concept of fuzzy input mix-efficiency and evaluate the fuzzy input mix-efficiency using α – cut approach, (ii) a fuzzy correlation coefficient method using expected value approach which calculates the expected intervals and expected values of fuzzy correlation coefficients between fuzzy inputs and fuzzy outputs, and (iii) a new method for ranking the DMUs on the basis of fuzzy input mix-efficiency. The proposed approaches are then applied to the State Bank of Patiala in the Punjab state of India with districts as the DMUs.
论文关键词:Fuzzy data envelopment analysis,Fuzzy CCR input efficiency,Fuzzy SBM input efficiency,Fuzzy input mix-efficiency,Fuzzy correlation coefficient,Fuzzy ranking approach,Banking performance evaluation
论文评审过程:Available online 5 September 2012.
论文官网地址:https://doi.org/10.1016/j.eswa.2012.08.047