Determining and characterizing the reused text for plagiarism detection
作者:
Highlights:
•
摘要
An important task in plagiarism detection is determining and measuring similar text portions between a given pair of documents. One of the main difficulties of this task resides on the fact that reused text is commonly modified with the aim of covering or camouflaging the plagiarism. Another difficulty is that not all similar text fragments are examples of plagiarism, since thematic coincidences also tend to produce portions of similar text. In order to tackle these problems, we propose a novel method for detecting likely portions of reused text. This method is able to detect common actions performed by plagiarists such as word deletion, insertion and transposition, allowing to obtain plausible portions of reused text. We also propose representing the identified reused text by means of a set of features that denote its degree of plagiarism, relevance and fragmentation. This new representation aims to facilitate the recognition of plagiarism by considering diverse characteristics of the reused text during the classification phase. Experimental results employing a supervised classification strategy showed that the proposed method is able to outperform traditionally used approaches.
论文关键词:Plagiarism detection,Text reuse,Machine learning,Supervised classification
论文评审过程:Available online 27 September 2012.
论文官网地址:https://doi.org/10.1016/j.eswa.2012.09.021