Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem

作者:

Highlights:

摘要

In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.

论文关键词:Multi-objective project scheduling,Multi-objective hybrid algorithm,Multi-objective simulated annealing algorithm,Multi-objective evolutionary algorithm,Non-dominated solutions

论文评审过程:Available online 23 November 2012.

论文官网地址:https://doi.org/10.1016/j.eswa.2012.10.058