Finding the needle: A risk-based ranking of product listings at online auction sites for non-delivery fraud prediction
作者:
Highlights:
•
摘要
Non-delivery fraud is a recurring problem at online auction sites: false sellers that list nonexistent products just to receive payments and afterwards disappear, possibly repeating the swindle with another identity. In our work we identified a set of publicly available features related to listings, sellers and product categories, and built a machine learning system for fraud prediction taking into account the high class imbalance of real data and the need to control the false positives rate due to commercial reasons. We tested the proposed system with data collected from a major Brazilian online auction site, obtaining good results on the identification of fraudsters before they strike, even when they had no previous historical information. We also evaluated the contribution of category-related features to fraud detection. Finally, we compared the learning algorithm used (boosted trees) with other state-of-the-art methods.
论文关键词:Fraud detection,Non-delivery fraud,Boosted trees,E-commerce,Online auction sites,Machine learning,Data collection
论文评审过程:Available online 4 March 2013.
论文官网地址:https://doi.org/10.1016/j.eswa.2013.02.027