Combining a neural network with a rule-based expert system approach for short-term power load forecasting in Taiwan
作者:
Highlights:
•
摘要
A back-propagation neural network with the output provided by a rule-based expert system is designed for short-term power load forecasting. To demonstrate that the inclusion of the prediction from a rule-based expert system of a power system would improve the predictive capability of the network, load forecasting is performed on the Taiwan power system. The hourly load for one typical day was evaluated and, in that case, the inclusion of the rule-based expert system prediction significantly improved the neural network's prediction of power load. Moreover, the proposed combined approach converges much faster than the conventional neural network and the rule-based expert system method. Extensive studies were performed on the robustness of the built network model by using different specified censoring time. The prediction intervals of future power load series are also provided, to evaluate the prediction efficiency of the neural network model.
论文关键词:
论文评审过程:Available online 19 May 1998.
论文官网地址:https://doi.org/10.1016/S0957-4174(97)00048-1