Classification models for sequential flight test results for selecting air force pilot trainee
作者:
Highlights:
•
摘要
The main purpose of this paper is to present the selection criteria for Air Force pilot training candidates in order to save costs involved in the three stage sequential pilot training procedures currently used in Korea. We use classification models such as decision tree, logistic regression and neural network based on the aptitude test results of 288 ROK Air Force applicants in 1994–1996. Various classification models are compared in terms of classification accuracy, Receiver Operating Characteristic chart and Lift chart. As a result, neural network is evaluated as the best classification model for each sequential flight performance while logistic regression model outperforms the others for the overall flight result. The fitted logistic regression indicates that the factors such as attention sharing, instrument reading, and mechanical comprehension having significant effects on the flight results. We expect that the use of such classification models can increase the effectiveness of flight resources.
论文关键词:Flight aptitude,Classification model,Decision tree,Logistic regression,Neural network
论文评审过程:Received 6 October 2003, Accepted 1 December 2003, Available online 29 December 2003.
论文官网地址:https://doi.org/10.1016/j.eswa.2003.12.014