Attending to visual motion

作者:

Highlights:

摘要

Visual motion analysis has focused on decomposing image sequences into their component features. There has been little success at re-combining those features into moving objects. Here, a novel model of attentive visual motion processing is presented that addresses both decomposition of the signal into constituent features as well as the re-combination, or binding, of those features into wholes. A new feed-forward motion-processing pyramid is presented motivated by the neurobiology of primate motion processes. On this structure the Selective Tuning (ST) model for visual attention is demonstrated. There are three main contributions: (1) a new feed-forward motion processing hierarchy, the first to include a multi-level decomposition with local spatial derivatives of velocity; (2) examples of how ST operates on this hierarchy to attend to motion and to localize and label motion patterns; and (3) a new solution to the feature binding problem sufficient for grouping motion features into coherent object motion. Binding is accomplished using a top-down selection mechanism that does not depend on a single location-based saliency representation.

论文关键词:

论文评审过程:Received 6 February 2004, Accepted 5 October 2004, Available online 26 July 2005.

论文官网地址:https://doi.org/10.1016/j.cviu.2004.10.011