Visual terrain mapping for Mars exploration

作者:

Highlights:

摘要

One goal for future Mars missions is for a rover to be able to navigate autonomously to science targets not visible to the rover, but seen in orbital or descent images. This can be accomplished if accurate maps of the terrain are available for the rover to use in planning and localization. We describe techniques to generate such terrain maps using images with a variety of resolutions and scales, including surface images from the lander and rover, descent images captured by the lander as it approaches the planetary surface, and orbital images from current and future Mars orbiters. At the highest resolution, we process surface images captured by rovers and landers using bundle adjustment. At the next lower resolution (and larger scale), we use wide-baseline stereo vision to map terrain distant from a rover with surface images. Mapping the lander descent images using a structure-from-motion algorithm generates data at a hierarchy of resolutions. These provide a link between the high-resolution surface images and the low-resolution orbital images. Orbital images are mapped using similar techniques, although with the added complication that the images may be captured with a variety of sensors. Robust multi-modal matching techniques are applied to these images. The terrain maps are combined using a system for unifying multi-resolution models and integrating three-dimensional terrains. The result is a multi-resolution map that can be used to generate fixed-resolution maps at any desired scale.

论文关键词:

论文评审过程:Received 6 September 2005, Accepted 18 August 2006, Available online 2 October 2006.

论文官网地址:https://doi.org/10.1016/j.cviu.2006.08.005