Mutual information based registration of multimodal stereo videos for person tracking

作者:

Highlights:

摘要

Research presented in this paper deals with the systematic examination, development, and evaluation of a novel multimodal registration approach that can perform accurately and robustly for relatively close range surveillance applications. An analysis of multimodal image registration gives insight into the limitations of assumptions made in current approaches and motivates the methodology of the developed algorithm. Using calibrated stereo imagery, we employ maximization of mutual information in sliding correspondence windows that inform a disparity voting algorithm to demonstrate successful registration of objects in color and thermal imagery. Extensive evaluation of scenes with multiple objects at different depths and levels of occlusion shows high rates of successful registration. Ground truth experiments demonstrate the utility of the disparity voting techniques for multimodal registration by yielding qualitative and quantitative results that outperform approaches that do not consider occlusions. A basic framework for multimodal stereo tracking is investigated and promising experimental studies show the viability of using registration disparity estimates as a tracking feature.

论文关键词:

论文评审过程:Received 15 September 2006, Accepted 23 October 2006, Available online 20 December 2006.

论文官网地址:https://doi.org/10.1016/j.cviu.2006.10.008