Learning spatio-temporal dependency of local patches for complex motion segmentation

作者:

Highlights:

摘要

Segmenting complex motion, such as articulated motion and deformable objects, can be difficult if the prior knowledge of the motion pattern is not available. We present a novel method for motion segmentation by learning the motion priors from exemplar motions to guide the segmentation. Instead of modeling the motion field explicitly, we decompose each video frame into a number of local patches and learn the spatio-temporal contextual relations among them, e.g., if their motion relationships are consistent with that from the training data. Based on a novel motion feature to measure the relative motion of two patches, the SVM classifier learns their pairwise relationship. We convert the motion segmentation problem to a binary labeling problem, and propose an iterative solution to group the local patches whose motions are consistent. Compared with other approaches, such as the graph cut and normalized cut methods, this new method is computationally more efficient and is able to better handle the inaccurate inference of pairwise relationships. Results on both synthesized and real videos show that our method can learn to segment different types of complex motion patterns.

论文关键词:

论文评审过程:Received 5 March 2010, Accepted 16 November 2010, Available online 9 December 2010.

论文官网地址:https://doi.org/10.1016/j.cviu.2010.11.010