A robust multi-scale integration method to obtain the depth from gradient maps

作者:

Highlights:

摘要

We describe a robust method for the recovery of the depth map (or height map) from a gradient map (or normal map) of a scene, such as would be obtained by photometric stereo or interferometry. Our method allows for uncertain or missing samples, which are often present in experimentally measured gradient maps, and also for sharp discontinuities in the scene’s depth, e.g. along object silhouette edges. By using a multi-scale approach, our integration algorithm achieves linear time and memory costs. A key feature of our method is the allowance for a given weight map that flags unreliable or missing gradient samples. We also describe several integration methods from the literature that are commonly used for this task. Based on theoretical analysis and tests with various synthetic and measured gradient maps, we argue that our algorithm is as accurate as the best existing methods, handling incomplete data and discontinuities, and is more efficient in time and memory usage, especially for large gradient maps.

论文关键词:Computer vision,Multi-scale methods,Gradient map integration,Surface reconstruction

论文评审过程:Received 7 December 2011, Accepted 19 March 2012, Available online 27 March 2012.

论文官网地址:https://doi.org/10.1016/j.cviu.2012.03.006