Structure preserving non-negative matrix factorization for dimensionality reduction

作者:

Highlights:

摘要

The problem of dimensionality reduction is to map data from high dimensional spaces to low dimensional spaces. In the process of dimensionality reduction, the data structure, which is helpful to discover the latent semantics and simultaneously respect the intrinsic geometric structure, should be preserved. In this paper, to discover a low-dimensional embedding space with the nature of structure preservation and basis compactness, we propose a novel dimensionality reduction algorithm, called Structure Preserving Non-negative Matrix Factorization (SPNMF). In SPNMF, three kinds of constraints, namely local affinity, distant repulsion, and embedding basis redundancy elimination, are incorporated into the NMF framework. SPNMF is formulated as an optimization problem and solved by an effective iterative multiplicative update algorithm. The convergence of the proposed update solutions is proved. Extensive experiments on both synthetic data and six real world data sets demonstrate the encouraging performance of the proposed algorithm in comparison to the state-of-the-art algorithms, especially some related works based on NMF. Moreover, the convergence of the proposed updating rules is experimentally validated.

论文关键词:

论文评审过程:Received 20 June 2012, Accepted 19 April 2013, Available online 30 April 2013.

论文官网地址:https://doi.org/10.1016/j.cviu.2013.04.003