Object detection, shape recovery, and 3D modelling by depth-encoded hough voting
作者:
Highlights:
•
摘要
Detecting objects, estimating their pose, and recovering their 3D shape are critical problems in many vision and robotics applications. This paper addresses the above needs using a two stages approach. In the first stage, we propose a new method called DEHV – Depth-Encoded Hough Voting. DEHV jointly detects objects, infers their categories, estimates their pose, and infers/decodes objects depth maps from either a single image (when no depth maps are available in testing) or a single image augmented with depth map (when this is available in testing). Inspired by the Hough voting scheme introduced in [1], DEHV incorporates depth information into the process of learning distributions of image features (patches) representing an object category. DEHV takes advantage of the interplay between the scale of each object patch in the image and its distance (depth) from the corresponding physical patch attached to the 3D object. Once the depth map is given, a full reconstruction is achieved in a second (3D modelling) stage, where modified or state-of-the-art 3D shape and texture completion techniques are used to recover the complete 3D model. Extensive quantitative and qualitative experimental analysis on existing datasets [2], [3], [4] and a newly proposed 3D table-top object category dataset shows that our DEHV scheme obtains competitive detection and pose estimation results. Finally, the quality of 3D modelling in terms of both shape completion and texture completion is evaluated on a 3D modelling dataset containing both in-door and out-door object categories. We demonstrate that our overall algorithm can obtain convincing 3D shape reconstruction from just one single uncalibrated image.
论文关键词:
论文评审过程:Received 24 July 2012, Accepted 10 May 2013, Available online 22 May 2013.
论文官网地址:https://doi.org/10.1016/j.cviu.2013.05.002