A multimodal temporal panorama approach for moving vehicle detection, reconstruction and classification

作者:

Highlights:

摘要

Moving vehicle detection and classification using multimodal data is a challenging task in data collection, audio-visual alignment, data labeling and feature selection under uncontrolled environments with occlusions, motion blurs, varying image resolutions and perspective distortions. In this work, we propose an effective multimodal temporal panorama approach for moving vehicle detection and classification using a novel long-range audio-visual sensing system. A new audio-visual vehicle (AVV) dataset is created, which features automatic vehicle detection and audio-visual alignment, accurate vehicle extraction and reconstruction, and efficient data labeling. In particular, vehicles’ visual images are reconstructed once detected in order to remove most of the occlusions, motion blurs, and variations of perspective views. Multimodal audio-visual features are extracted, including global geometric features (aspect ratios, profiles), local structure features (HOGs), as well various audio features (MFCCs, etc.). Using radial-based SVMs, the effectiveness of the integration of these multimodal features is thoroughly and systematically studied. The concept of MTP may not be only limited to visual, motion and audio modalities; it could also be applicable to other sensing modalities that can obtain data in the temporal domain.

论文关键词:

论文评审过程:Available online 31 July 2013.

论文官网地址:https://doi.org/10.1016/j.cviu.2013.02.011