On rendering synthetic images for training an object detector
作者:
Highlights:
•
摘要
We propose a novel approach to synthesizing images that are effective for training object detectors. Starting from a small set of real images, our algorithm estimates the rendering parameters required to synthesize similar images given a coarse 3D model of the target object. These parameters can then be reused to generate an unlimited number of training images of the object of interest in arbitrary 3D poses, which can then be used to increase classification performances. A key insight of our approach is that the synthetically generated images should be similar to real images, not in terms of image quality, but rather in terms of features used during the detector training. We show in the context of drone, plane, and car detection that using such synthetically generated images yields significantly better performances than simply perturbing real images or even synthesizing images in such way that they look very realistic, as is often done when only limited amounts of training data are available.
论文关键词:
论文评审过程:Received 19 August 2014, Accepted 22 December 2014, Available online 20 January 2015, Version of Record 1 June 2015.
论文官网地址:https://doi.org/10.1016/j.cviu.2014.12.006