Generalizing semi-supervised generative adversarial networks to regression using feature contrasting
作者:
Highlights:
•
摘要
In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification problems to regression problems. In the last few years, the importance of improving the training of neural networks using semi-supervised training has been demonstrated for classification problems. We present a novel loss function, called feature contrasting, resulting in a discriminator which can distinguish between fake and real data based on feature statistics. This method avoids potential biases and limitations of alternative approaches. The generalization of semi-supervised GANs to the regime of regression problems of opens their use to countless applications as well as providing an avenue for a deeper understanding of how GANs function. We first demonstrate the capabilities of semi-supervised regression GANs on a toy dataset which allows for a detailed understanding of how they operate in various circumstances. This toy dataset is used to provide a theoretical basis of the semi-supervised regression GAN. We then apply the semi-supervised regression GANs to a number of real-world computer vision applications: age estimation, driving steering angle prediction, and crowd counting from single images. We perform extensive tests of what accuracy can be achieved with significantly reduced annotated data. Through the combination of the theoretical example and real-world scenarios, we demonstrate how semi-supervised GANs can be generalized to regression problems.
论文关键词:
论文评审过程:Received 1 July 2018, Revised 15 February 2019, Accepted 27 June 2019, Available online 5 July 2019, Version of Record 12 August 2019.
论文官网地址:https://doi.org/10.1016/j.cviu.2019.06.004