Efficient multi-output scene coordinate prediction for fast and accurate camera relocalization from a single RGB image

作者:

Highlights:

摘要

Camera relocalization refers to the problematic of the camera pose estimation including 3D translation and 3D rotation expressed in the world coordinate system with no temporal constraint. Camera relocalization is necessary in localization systems. However, it is still challenging to have both a real-time and accurate method. In this paper, we introduce our data-oriented hybrid method merging both machine learning and geometric approaches for fast and accurate camera relocalization from a single RGB image. We propose an efficient multi-output deep-forest regression based on a sparse feature detection, that uses a whole learned feature vector at each split function to improve the accuracy of 2D–3D point correspondences. Especially, multiple coordinate regression of our deep-forest allows to deal with ambiguous repetitive structure. The learned feature extraction is able to be pre-trained and reused for different scenes. The use of sparse feature detection reduces processing time and increases accuracy of predictions. Finally, we show favorable results in terms of accuracy and computational time compared to the state-of-the-art methods.

论文关键词:

论文评审过程:Received 5 December 2018, Revised 23 August 2019, Accepted 17 October 2019, Available online 31 October 2019, Version of Record 15 November 2019.

论文官网地址:https://doi.org/10.1016/j.cviu.2019.102850