Monocular 3D multi-person pose estimation via predicting factorized correction factors

作者:

Highlights:

摘要

Despite the great achievement of 3D human pose estimation, recovering the 3D poses of multiple persons in a single image is still a challenging problem. In this paper, we focus on one specific problem in 3D multi-person pose estimation (3D-MPPE): estimating the absolute 3D human poses. We proposed a pipeline consists of human detection, absolute 3D human root localization, and root-relative 3D single-person pose estimation modules. For the absolute 3D human root localization task, we propose a decoupling dual-branch structure to reconstruct the height of the human body, and further output the depth and localization of the 3D human root in the camera coordinate system. Furthermore, a data augmentation strategy is presented to tackle occlusions, such that our model can effectively estimate the root localization with the incomplete bounding boxes. For the 3D human relative pose estimation task, we use the attention mechanism to capture the correlation between human joint coordinates and further improve the accuracy of relative pose estimation. Finally, we merge the absolute depth of human and the relative 3D pose to output the absolute 3D human pose.

论文关键词:

论文评审过程:Received 13 May 2021, Revised 9 September 2021, Accepted 12 September 2021, Available online 28 September 2021, Version of Record 5 October 2021.

论文官网地址:https://doi.org/10.1016/j.cviu.2021.103278