Physically-admissible polarimetric data augmentation for road-scene analysis
作者:
Highlights:
•
摘要
Polarimetric imaging, along with deep learning, has shown improved performances on different tasks including scene analysis. However, its robustness may be questioned because of the small size of the training datasets. Though the issue could be solved by data augmentation, polarization modalities are subject to physical feasibility constraints unaddressed by classical data augmentation techniques. To address this issue, we propose to use CycleGAN, an image translation technique based on deep generative models that solely relies on unpaired data, to transfer large labeled road scene datasets to the polarimetric domain. We design several auxiliary loss terms that, alongside the CycleGAN losses, deal with the physical constraints of polarimetric images. The efficiency of this solution is demonstrated on road scene object detection tasks where generated realistic polarimetric images allow to improve performances on cars and pedestrian detection up to 9%. The resulting constrained CycleGAN is publicly released, allowing anyone to generate their own polarimetric images.
论文关键词:
论文评审过程:Received 23 July 2021, Revised 21 April 2022, Accepted 15 June 2022, Available online 22 June 2022, Version of Record 1 July 2022.
论文官网地址:https://doi.org/10.1016/j.cviu.2022.103495