A framework for heading-guided recognition of human activity
作者:
Highlights:
•
摘要
A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. Heading-guided recognition (HGR) is proposed as an efficient method for adaptive classification of activity. The HGR approach is demonstrated using “motion history images” that are then recognized via a mixture-of-Gaussians classifier. The system is tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. In addition, experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
论文关键词:
论文评审过程:Received 11 September 2001, Accepted 27 June 2003, Available online 13 August 2003.
论文官网地址:https://doi.org/10.1016/S1077-3142(03)00096-1