Gauge Neural Network with Z(2) Synaptic Variables: Phase Structure and Simulation of Learning and Recalling Patterns

作者:Atsutomo Murai, Tetsuo Matsui

摘要

We study the Z(2) gauge-invariant neural network which is defined on a partially connected random network and involves Z(2) neuron variables \(S_i\) (\(=\pm \)1) and Z(2) synaptic connection (gauge) variables \(J_{ij}\) (\(=\pm \)1). Its energy consists of the Hopfield term \(-c_1S_iJ_{ij}S_j\), double Hopfield term \(-c_2 S_iJ_{ij}J_{jk} S_k\), and the reverberation (triple Hopfield) term \(-c_3 J_{ij}J_{jk}J_{ki}\) of synaptic self interactions. For the case \(c_2=0\), its phase diagram in the \(c_3-c_1\) plane has been studied both for the symmetric couplings \(J_{ij}=J_{ji}\) and asymmetric couplings (\(J_{ij}\) and \(J_{ji}\) are independent); it consists of the Higgs, Coulomb and confinement phases, each of which is characterized by the ability of learning and/or recalling patterns. In this paper, we consider the phase diagram for the case of nonvanishing \(c_2\), and examine its effect. We find that the \(c_2\) term enlarges the region of Higgs phase and generates a new second-order transition. We also simulate the dynamical process of learning patterns of \(S_i\) and recalling them and measure the performance directly by overlaps of \(S_i\). We discuss the difference in performance for the cases of Z(2) variables and real variables for synaptic connections.

论文关键词:Hopfield model, Gauge neural network, Phase diagram, Higgs phase, Confinement phase, Simulation of learning and recalling process

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11063-017-9678-3