Short-Term Wind Speed Prediction Using Signal Preprocessing Technique and Evolutionary Support Vector Regression

作者:Jujie Wang, Yaning Li

摘要

Short-term wind speed prediction is beneficial to guarantee the safety of wind power utilization and reduce the cost of wind power generation. As a kind of the powerful artificial intelligent algorithms, support vector regression (SVR) has been successfully employed in solving forecasting problems. However, due to the intrinsic complexity and multi-patterns of wind speed fluctuations, it is regarded as one of the most challenging applications for wind speed prediction. To alleviate the influence of complexity and capture these different patterns, this study proposes a novel approach named SIE–WDA–GA–SVR for short-term wind speed prediction, which applies the seasonal information extraction (SIE) and wavelet decomposition algorithm (WDA) into hybrid model that integrates the genetic algorithm (GA) into SVR. First, the proposed approach uses SIE to decompose the original wind speed into seasonal and trend components, and the seasonal indices are calculated by SIE. Second, the proposed approach uses WDA to decompose the trend component into both the approximate and the detailed scales. Third, the proposed approach uses GA–SVR to forecast the approximated and detailed scales, respectively. Then, the prediction values of the trend component can be obtained by integrating the prediction values of the approximated scale into the prediction values of the detailed scale. By integrating the seasonal indices into the prediction values of trend component, we can obtain the final forecasting results of the original wind speed. Moreover, the partial autocorrelation function is used to determine the number of input dimension for the SVR, and the GA is used to select the parameters of the SVR. Four real wind speed datasets are used as test samples to verify the proposed approach. Experimental results indicate that the proposed approach outperforms other benchmark models in four statistical error measures, and can improve the forecasting accuracy of wind speed.

论文关键词:Wind spend prediction, Seasonal information extraction, Wavelet decomposition algorithm, Support vector regression, Hybrid model

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11063-017-9766-4