Stacked Fusion Supervised Auto-encoder with an Additional Classification Layer

作者:Rui Li, Xiaodan Wang, Wen Quan, Lei Lei

摘要

Auto-encoders are unsupervised deep learning models, which try to learn hidden representations to reconstruct the inputs. While the learned representations are suitable for applications related to unsupervised reconstruction, they may not be optimal for classification. In this paper, we propose a supervised auto-encoder (SupAE) with an addition classification layer on the representation layer to jointly predict targets and reconstruct inputs, so it can learn discriminative features specifically for classification tasks. We stack several SupAE and apply a greedy layer-by-layer training approach to learn the stacked supervised auto-encoder (SSupAE). Then an adaptive weighted majority voting algorithm is proposed to fuse the prediction results of SupAE and the SSupAE, because each individual SupAE and the final SSupAE can both get the posterior probability information of samples belong to each class, we introduce Shannon entropy to measure the classification ability for different samples based on the posterior probability information, and assign high weight to sample with low entropy, thus more reasonable weights are assigned to different samples adaptively. Finally, we fuse the different results of classification layer with the proposed adaptive weighted majority voting algorithm to get the final recognition results. Experimental results on several classification datasets show that our model can learn discriminative features and improve the classification performance significantly.

论文关键词:Deep learning, Supervised learning, Auto-encoder, Adaptive weighted voting fusion

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11063-020-10223-w