Cross-Domain Polarity Models to Evaluate User eXperience in E-learning
作者:Rosario Sanchis-Font, Maria Jose Castro-Bleda, José-Ángel González, Ferran Pla, Lluís-F. Hurtado
摘要
Virtual learning environments are growing in importance as fast as e-learning is becoming highly demanded by universities and students all over the world. This paper investigates how to automatically evaluate User eXperience in this domain using sentiment analysis techniques. For this purpose, a corpus with the opinions given by a total of 583 users (107 English speakers and 476 Spanish speakers) about three learning management systems in different courses has been built. All the collected opinions were manually labeled with polarity information (positive, negative or neutral) by three human annotators, both at the whole opinion and sentence levels. We have applied our state-of-the-art sentiment analysis models, trained with a corpus of a different semantic domain (a Twitter corpus), to study the use of cross-domain models for this task. Cross-domain models based on deep neural networks (convolutional neural networks, transformer encoders and attentional BLSTM models) have been tested. In order to contrast our results, three commercial systems for the same task (MeaningCloud, Microsoft Text Analytics and Google Cloud) were also tested. The obtained results are very promising and they give an insight to keep going the research of applying sentiment analysis tools on User eXperience evaluation. This is a pioneering idea to provide a better and accurate understanding on human needs in the interaction with virtual learning environments and a step towards the development of automatic tools that capture the feed-back of user perception for designing virtual learning environments centered in user’s emotions, beliefs, preferences, perceptions, responses, behaviors and accomplishments that occur before, during and after the interaction.
论文关键词:Machine learning, Artificial neural networks, Sentiment analysis, User experience, Virtual learning environments, Learning management systems
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11063-020-10260-5