Orthogonal RBF Neural Network Approximation
作者:Péter András
摘要
The approximation properties of the RBF neural networks are investigated in this paper. A new approach is proposed, which is based on approximations with orthogonal combinations of functions. An orthogonalization framework is presented for the Gaussian basis functions. It is shown how to use this framework to design efficient neural networks. Using this method we can estimate the necessary number of the hidden nodes, and we can evaluate how appropriate the use of the Gaussian RBF networks is for the approximation of a given function.
论文关键词:approximation, neural network design, orthogonalization, RBF neural networks, spectral analysis
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1018621308457