Fuzzy Clustering Using A Compensated Fuzzy Hopfield Network

作者:Jzau-Sheng Lin

摘要

Hopfield neural networks are well known for cluster analysis with an unsupervised learning scheme. This class of networks is a set of heuristic procedures that suffers from several problems such as not guaranteed convergence and output depending on the sequence of input data. In this paper, a Compensated Fuzzy Hopfield Neural Network (CFHNN) is proposed which integrates a Compensated Fuzzy C-Means (CFCM) model into the learning scheme and updating strategies of the Hopfield neural network. The CFCM, modified from Penalized Fuzzy C-Means algorithm (PFCM), is embedded into a Hopfield net to avoid the NP-hard problem and to speed up the convergence rate for the clustering procedure. The proposed network also avoids determining values for the weighting factors in the energy function. In addition, its training scheme enables the network to learn more rapidly and more effectively than FCM and PFCM. In experimental results, the CFHNN method shows promising results in comparison with FCM and PFCM methods.

论文关键词:clustering analysis, FCM, PFCM, Hopfield Neural Network, fuzzy sets

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1018658712894