Adaptive Radial Basis Decomposition by Learning Vector Quantization

作者:Branko Šter, Andrej Dobnikar

摘要

A method for function approximation in reinforcement learning settings is proposed. The action-value function of the Q-learning method is approximated by the radial basis function neural network and learned by the gradient descent. Those radial basis units that are unable to fit the local action-value function exactly enough are decomposed into new units with smaller widths. The local temporal-difference error is modelled by a two-class learning vector quantization algorithm, which approximates distributions of the positive and of the negative error and provides the centers of the new units. This method is especially convenient in cases of smooth value functions with large local variation in certain parts of the state space, such that non-uniform placement of basis functions is required. In comparison with four related methods, it has the smallest requirements of basis functions when achieving a comparable accuracy.

论文关键词:decomposition, function approximation, mobile robot, RBF neural network, reinforcement learning

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1026242620248