Ensemble Learning for Chemical Sensor Arrays
作者:S. Bermejo, J. Cabestany
摘要
Electrochemical sensors, like ion-selective field transistors (ISFET), are electronic devices that merge solid-state electronic technology with chemical sensors so as to be sensitive to the concentration of a particular ion in a solution. However, as it has been previously reported, their response does not only depend on a single ion but also is affected by several interfering ions found in the solution to be measured. These interfering ions can be considered as noise and consequently, a post-processing stage that increases the SNR is obligatory. Our work shows how ensemble learning methods could be used in an array of chemical sensors in order to deal with this problem. In particular, we introduce a novel neural learning architecture for ISFET arrays, which employ ISFET models as prior knowledge. The proposed ensemble learning systems are RBF-like solutions based on bagging and optimal linear combination. Several experimental results are included, which demonstrate the interest and viability of the proposed solution.
论文关键词:array processing, bagging, ensemble learning, optimal linear combination, radial basis functions (RBF), sensor arrays
论文评审过程:
论文官网地址:https://doi.org/10.1023/B:NEPL.0000016844.22502.a8