Hopfield Network as Static Optimizer: Learning the Weights and Eliminating the Guesswork
作者:Gursel Serpen
摘要
This article presents a simulation study for validation of an adaptation methodology for learning weights of a Hopfield neural network configured as a static optimizer. The quadratic Liapunov function associated with the Hopfield network dynamics is leveraged to map the set of constraints associated with a static optimization problem. This approach leads to a set of constraint-specific penalty or weighting coefficients whose values need to be defined. The methodology leverages a learning-based approach to define values of constraint weighting coefficients through adaptation. These values are in turn used to compute values of network weights, effectively eliminating the guesswork in defining weight values for a given static optimization problem, which has been a long-standing challenge in artificial neural networks. The simulation study is performed using the Traveling Salesman problem from the domain of combinatorial optimization. Simulation results indicate that the adaptation procedure is able to guide the Hopfield network towards solutions of the problem starting with random values for weights and constraint weighting coefficients. At the conclusion of the adaptation phase, the Hopfield network acquires weight values which readily position the network to search for local minimum solutions. The demonstrated successful application of the adaptation procedure eliminates the need to guess or predetermine the values for weights of the Hopfield network.
论文关键词:Hopfield neural network, Static optimization, Combinatorial, Weights, Adaptation, Learning, Training, Traveling salesman problem, Computational complexity, Gradient descent, Liapunov function
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11063-007-9055-8