A New Incremental PCA Algorithm With Application to Visual Learning and Recognition
作者:Dong Huang, Zhang Yi, Xiaorong Pu
摘要
This paper proposes a new mean-shifting Incremental PCA (IPCA) method based on the autocorrelation matrix. The dimension of the updated matrix remains constant instead of increasing with the number of input data points. Comparing to some previous batch and iterative PCA algorithms, the proposed IPCA requires lower computational time and storage capacity owing to the two transformations designed. The experiment results show the efficiency and accuracy of the proposed IPCA method in applications of the on-line visual learning and recognition.
论文关键词:Principal component analysis, Incremental updating, On-line visual learning, Object recognition
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11063-009-9117-1