A probabilistic multimodal approach for predicting listener backchannels
作者:Louis-Philippe Morency, Iwan de Kok, Jonathan Gratch
摘要
During face-to-face interactions, listeners use backchannel feedback such as head nods as a signal to the speaker that the communication is working and that they should continue speaking. Predicting these backchannel opportunities is an important milestone for building engaging and natural virtual humans. In this paper we show how sequential probabilistic models (e.g., Hidden Markov Model or Conditional Random Fields) can automatically learn from a database of human-to-human interactions to predict listener backchannels using the speaker multimodal output features (e.g., prosody, spoken words and eye gaze). The main challenges addressed in this paper are automatic selection of the relevant features and optimal feature representation for probabilistic models. For prediction of visual backchannel cues (i.e., head nods), our prediction model shows a statistically significant improvement over a previously published approach based on hand-crafted rules.
论文关键词:Listener backchannel feedback, Nonverbal behavior prediction, Sequential probabilistic model, Conditional random field, Head nod, Multimodal
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10458-009-9092-y