Practical voting rules with partial information
作者:Meir Kalech, Sarit Kraus, Gal A. Kaminka, Claudia V. Goldman
摘要
Voting is an essential mechanism that allows multiple agents to reach a joint decision. The joint decision, representing a function over the preferences of all agents, is the winner among all possible (candidate) decisions. To compute the winning candidate, previous work has typically assumed that voters send their complete set of preferences for computation, and in fact this has been shown to be required in the worst case. However, in practice, it may be infeasible for all agents to send a complete set of preferences due to communication limitations and willingness to keep as much information private as possible. The goal of this paper is to empirically evaluate algorithms to reduce communication on various sets of experiments. Accordingly, we propose an iterative algorithm that allows the agents to send only part of their preferences, incrementally. Experiments with simulated and real-world data show that this algorithm results in an average of 35% savings in communications, while guaranteeing that the actual winning candidate is revealed. A second algorithm applies a greedy heuristic to save up to 90% of communications. While this heuristic algorithm cannot guarantee that a true winning candidate is found, we show that in practice, close approximations are obtained.
论文关键词:Multi-agent systems, Computational social choice, Voting
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10458-010-9133-6