Predictive feature selection for genetic policy search

作者:Steven Loscalzo, Robert Wright, Lei Yu

摘要

Automatic learning of control policies is becoming increasingly important to allow autonomous agents to operate alongside, or in place of, humans in dangerous and fast-paced situations. Reinforcement learning (RL), including genetic policy search algorithms, comprise a promising technology area capable of learning such control policies. Unfortunately, RL techniques can take prohibitively long to learn a sufficiently good control policy in environments described by many sensors (features). We argue that in many cases only a subset of available features are needed to learn the task at hand, since others may represent irrelevant or redundant information. In this work, we propose a predictive feature selection framework that analyzes data obtained during execution of a genetic policy search algorithm to identify relevant features on-line. This serves to constrain the policy search space and reduces the time needed to locate a sufficiently good policy by embedding feature selection into the process of learning a control policy. We explore this framework through an instantiation called predictive feature selection embedded in neuroevolution of augmenting topology (NEAT), or PFS-NEAT. In an empirical study, we demonstrate that PFS-NEAT is capable of enabling NEAT to successfully find good control policies in two benchmark environments, and show that it can outperform three competing feature selection algorithms, FS-NEAT, FD-NEAT, and SAFS-NEAT, in several variants of these environments.

论文关键词:Genetic policy search, Feature selection, Dimensionality reduction, Reinforcement learning

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10458-014-9268-y