Learning behavior patterns from video for agent-based crowd modeling and simulation
作者:Jinghui Zhong, Wentong Cai, Linbo Luo, Mingbi Zhao
摘要
This paper proposes a novel data-driven modeling framework to construct agent-based crowd model based on real-world video data. The constructed crowd model can generate crowd behaviors that match those observed in the video and can be used to predict trajectories of pedestrians in the same scenario. In the proposed framework, a dual-layer architecture is proposed to model crowd behaviors. The bottom layer models the microscopic collision avoidance behaviors, while the top layer models the macroscopic crowd behaviors such as the goal selection patterns and the path navigation patterns. An automatic learning algorithm is proposed to learn behavior patterns from video data. The learned behavior patterns are then integrated into the dual-layer architecture to generate realistic crowd behaviors. To validate its effectiveness, the proposed framework is applied to two different real world scenarios. The simulation results demonstrate that the proposed framework can generate crowd behaviors similar to those observed in the videos in terms of crowd density distribution. In addition, the proposed framework can also offer promising performance on predicting the trajectories of pedestrians.
论文关键词:Agent-based modeling, Crowd modeling and simulation, Data-driven modeling, Behavior pattern
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10458-016-9334-8