数据学习
AI博客
原创AI博客
大模型技术博客
AI资源仓库
AI领域与任务
AI研究机构
AI学术期刊
AI论文快讯
AI数据集
AI开源工具
数据推荐
AI大模型
国产AI大模型生态全览
AI模型概览图
AI模型月报
AI基础大模型
AI大模型排行榜
业界大模型评测基准
大模型综合能力排行榜
大模型编程能力排行榜
LMSys ChatBot Arena排行榜
Berkeley大模型工具使用能力排行榜
OpenLLMLeaderboard中国站
AI大模型大全
大模型部署教程
学术世界
学术世界
期刊出版社
领域期刊
SCI/SCIE/SSCI/EI简介
期刊列表
会议列表
学术期刊信息检索
JCR期刊分区查询
CiteScore期刊分区查询
中科院期刊分区查询
管理 - UTD24期刊列表
管理 - AJG(ABS)期刊星级查询
管理 - FMS推荐期刊列表
计算机 - CCF推荐期刊会议列表
南大核心(CSSCI)
合工大小核心
合工大大核心
2023年度AI产品总结
AI大模型工具导航
AI大模型工具导航网站
在线聊天大模型列表
期刊列表
Journal of Machine Learning Research
Issue 25
Journal of Machine Learning Research
(JMLR)
-
Issue 25
论文列表
点击这里查看 Journal of Machine Learning Research 的JCR分区、影响因子等信息
卷期号:
Issue 25
发布时间:
卷期年份:
2020
卷期官网:
本期论文列表
Expected Policy Gradients for Reinforcement Learning.
原文链接
谷歌学术
必应学术
百度学术
AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models.
原文链接
谷歌学术
必应学术
百度学术
Learning Causal Networks via Additive Faithfulness.
原文链接
谷歌学术
必应学术
百度学术
Reinforcement Learning in Continuous Time and Space: A Stochastic Control Approach.
原文链接
谷歌学术
必应学术
百度学术
Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction.
原文链接
谷歌学术
必应学术
百度学术
apricot: Submodular selection for data summarization in Python.
原文链接
谷歌学术
必应学术
百度学术
Cornac: A Comparative Framework for Multimodal Recommender Systems.
原文链接
谷歌学术
必应学术
百度学术
Monte Carlo Gradient Estimation in Machine Learning.
原文链接
谷歌学术
必应学术
百度学术
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Importance Sampling Techniques for Policy Optimization.
原文链接
谷歌学术
必应学术
百度学术
Sparse and low-rank multivariate Hawkes processes.
原文链接
谷歌学术
必应学术
百度学术
Local Causal Network Learning for Finding Pairs of Total and Direct Effects.
原文链接
谷歌学术
必应学术
百度学术
Topology of Deep Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
A Unified Framework for Structured Graph Learning via Spectral Constraints.
原文链接
谷歌学术
必应学术
百度学术
Streamlined Variational Inference with Higher Level Random Effects.
原文链接
谷歌学术
必应学术
百度学术
A Unified q-Memorization Framework for Asynchronous Stochastic Optimization.
原文链接
谷歌学术
必应学术
百度学术
Memoryless Sequences for General Losses.
原文链接
谷歌学术
必应学术
百度学术
On lp-Support Vector Machines and Multidimensional Kernels.
原文链接
谷歌学术
必应学术
百度学术
Ensemble Learning for Relational Data.
原文链接
谷歌学术
必应学术
百度学术
Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality.
原文链接
谷歌学术
必应学术
百度学术
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data.
原文链接
谷歌学术
必应学术
百度学术
Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space.
原文链接
谷歌学术
必应学术
百度学术
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality.
原文链接
谷歌学术
必应学术
百度学术
Spectral Algorithms for Community Detection in Directed Networks.
原文链接
谷歌学术
必应学术
百度学术
A Regularization-Based Adaptive Test for High-Dimensional GLMs.
原文链接
谷歌学术
必应学术
百度学术
New Insights and Perspectives on the Natural Gradient Method.
原文链接
谷歌学术
必应学术
百度学术
WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions.
原文链接
谷歌学术
必应学术
百度学术
Lower Bounds for Parallel and Randomized Convex Optimization.
原文链接
谷歌学术
必应学术
百度学术
Optimal Bipartite Network Clustering.
原文链接
谷歌学术
必应学术
百度学术
Bayesian Model Selection with Graph Structured Sparsity.
原文链接
谷歌学术
必应学术
百度学术
Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification.
原文链接
谷歌学术
必应学术
百度学术
The weight function in the subtree kernel is decisive.
原文链接
谷歌学术
必应学术
百度学术
Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes.
原文链接
谷歌学术
必应学术
百度学术
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning.
原文链接
谷歌学术
必应学术
百度学术
On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms.
原文链接
谷歌学术
必应学术
百度学术
Efficient Adjustment Sets for Population Average Causal Treatment Effect Estimation in Graphical Models.
原文链接
谷歌学术
必应学术
百度学术
Distributed Feature Screening via Componentwise Debiasing.
原文链接
谷歌学术
必应学术
百度学术
Consistency of Semi-Supervised Learning Algorithms on Graphs: Probit and One-Hot Methods.
原文链接
谷歌学术
必应学术
百度学术
A determinantal point process for column subset selection.
原文链接
谷歌学术
必应学术
百度学术
Fast Bayesian Inference of Sparse Networks with Automatic Sparsity Determination.
原文链接
谷歌学术
必应学术
百度学术
Change Point Estimation in a Dynamic Stochastic Block Model.
原文链接
谷歌学术
必应学术
百度学术
Dynamic Control of Stochastic Evolution: A Deep Reinforcement Learning Approach to Adaptively Targeting Emergent Drug Resistance.
原文链接
谷歌学术
必应学术
百度学术
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning.
原文链接
谷歌学术
必应学术
百度学术
Stochastic Nested Variance Reduction for Nonconvex Optimization.
原文链接
谷歌学术
必应学术
百度学术
Provable Convex Co-clustering of Tensors.
原文链接
谷歌学术
必应学术
百度学术
Practical Locally Private Heavy Hitters.
原文链接
谷歌学术
必应学术
百度学术
Causal Discovery from Heterogeneous/Nonstationary Data.
原文链接
谷歌学术
必应学术
百度学术
GluonTS: Probabilistic and Neural Time Series Modeling in Python.
原文链接
谷歌学术
必应学术
百度学术
Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables.
原文链接
谷歌学术
必应学术
百度学术
Probabilistic Symmetries and Invariant Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning.
原文链接
谷歌学术
必应学术
百度学术
Representation Learning for Dynamic Graphs: A Survey.
原文链接
谷歌学术
必应学术
百度学术
Tslearn, A Machine Learning Toolkit for Time Series Data.
原文链接
谷歌学术
必应学术
百度学术
A Unified Framework of Online Learning Algorithms for Training Recurrent Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Randomization as Regularization: A Degrees of Freedom Explanation for Random Forest Success.
原文链接
谷歌学术
必应学术
百度学术
NEVAE: A Deep Generative Model for Molecular Graphs.
原文链接
谷歌学术
必应学术
百度学术
Model-Preserving Sensitivity Analysis for Families of Gaussian Distributions.
原文链接
谷歌学术
必应学术
百度学术
Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data.
原文链接
谷歌学术
必应学术
百度学术
Target Propagation in Recurrent Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms.
原文链接
谷歌学术
必应学术
百度学术
On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond.
原文链接
谷歌学术
必应学术
百度学术
Convergence of Sparse Variational Inference in Gaussian Processes Regression.
原文链接
谷歌学术
必应学术
百度学术
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes.
原文链接
谷歌学术
必应学术
百度学术
Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning.
原文链接
谷歌学术
必应学术
百度学术
GraKeL: A Graph Kernel Library in Python.
原文链接
谷歌学术
必应学术
百度学术
Mining Topological Structure in Graphs through Forest Representations.
原文链接
谷歌学术
必应学术
百度学术
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems.
原文链接
谷歌学术
必应学术
百度学术
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics.
原文链接
谷歌学术
必应学术
百度学术
Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization.
原文链接
谷歌学术
必应学术
百度学术
Harmless Overfitting: Using Denoising Autoencoders in Estimation of Distribution Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Quantile Graphical Models: a Bayesian Approach.
原文链接
谷歌学术
必应学术
百度学术
pyts: A Python Package for Time Series Classification.
原文链接
谷歌学术
必应学术
百度学术
Trust-Region Variational Inference with Gaussian Mixture Models.
原文链接
谷歌学术
必应学术
百度学术
GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning.
原文链接
谷歌学术
必应学术
百度学术
Distributed Minimum Error Entropy Algorithms.
原文链接
谷歌学术
必应学术
百度学术
High-dimensional Gaussian graphical models on network-linked data.
原文链接
谷歌学术
必应学术
百度学术
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise.
原文链接
谷歌学术
必应学术
百度学术
Convergence Rates for the Stochastic Gradient Descent Method for Non-Convex Objective Functions.
原文链接
谷歌学术
必应学术
百度学术
Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models.
原文链接
谷歌学术
必应学术
百度学术
Multiclass Anomaly Detector: the CS++ Support Vector Machine.
原文链接
谷歌学术
必应学术
百度学术
Skill Rating for Multiplayer Games. Introducing Hypernode Graphs and their Spectral Theory.
原文链接
谷歌学术
必应学术
百度学术
The Kalai-Smorodinsky solution for many-objective Bayesian optimization.
原文链接
谷歌学术
必应学术
百度学术
ThunderGBM: Fast GBDTs and Random Forests on GPUs.
原文链接
谷歌学术
必应学术
百度学术
Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients.
原文链接
谷歌学术
必应学术
百度学术
Community-Based Group Graphical Lasso.
原文链接
谷歌学术
必应学术
百度学术
Learning and Interpreting Multi-Multi-Instance Learning Networks.
原文链接
谷歌学术
必应学术
百度学术
Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes.
原文链接
谷歌学术
必应学术
百度学术
Union of Low-Rank Tensor Spaces: Clustering and Completion.
原文链接
谷歌学术
必应学术
百度学术
Doubly Distributed Supervised Learning and Inference with High-Dimensional Correlated Outcomes.
原文链接
谷歌学术
必应学术
百度学术
metric-learn: Metric Learning Algorithms in Python.
原文链接
谷歌学术
必应学术
百度学术
Universal Latent Space Model Fitting for Large Networks with Edge Covariates.
原文链接
谷歌学术
必应学术
百度学术
Multiparameter Persistence Landscapes.
原文链接
谷歌学术
必应学术
百度学术
Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models.
原文链接
谷歌学术
必应学术
百度学术
A Numerical Measure of the Instability of Mapper-Type Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Complete Dictionary Learning via L4-Norm Maximization over the Orthogonal Group.
原文链接
谷歌学术
必应学术
百度学术
A Statistical Learning Approach to Modal Regression.
原文链接
谷歌学术
必应学术
百度学术
Kriging Prediction with Isotropic Matern Correlations: Robustness and Experimental Designs.
原文链接
谷歌学术
必应学术
百度学术
Tensor Regression Networks.
原文链接
谷歌学术
必应学术
百度学术
Agnostic Estimation for Phase Retrieval.
原文链接
谷歌学术
必应学术
百度学术
(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets.
原文链接
谷歌学术
必应学术
百度学术
Robust Reinforcement Learning with Bayesian Optimisation and Quadrature.
原文链接
谷歌学术
必应学术
百度学术
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization.
原文链接
谷歌学术
必应学术
百度学术
Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting.
原文链接
谷歌学术
必应学术
百度学术
Distributed Kernel Ridge Regression with Communications.
原文链接
谷歌学术
必应学术
百度学术
MFE: Towards reproducible meta-feature extraction.
原文链接
谷歌学术
必应学术
百度学术
Estimation of a Low-rank Topic-Based Model for Information Cascades.
原文链接
谷歌学术
必应学术
百度学术
High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix.
原文链接
谷歌学术
必应学术
百度学术
Cramer-Wold Auto-Encoder.
原文链接
谷歌学术
必应学术
百度学术
AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with Python Bindings).
原文链接
谷歌学术
必应学术
百度学术
High-Dimensional Inference for Cluster-Based Graphical Models.
原文链接
谷歌学术
必应学术
百度学术
Optimal Estimation of Sparse Topic Models.
原文链接
谷歌学术
必应学术
百度学术
Convex and Non-Convex Approaches for Statistical Inference with Class-Conditional Noisy Labels.
原文链接
谷歌学术
必应学术
百度学术
High Dimensional Forecasting via Interpretable Vector Autoregression.
原文链接
谷歌学术
必应学术
百度学术
General Latent Feature Models for Heterogeneous Datasets.
原文链接
谷歌学术
必应学术
百度学术
Self-paced Multi-view Co-training.
原文链接
谷歌学术
必应学术
百度学术
Sequential change-point detection in high-dimensional Gaussian graphical models.
原文链接
谷歌学术
必应学术
百度学术
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
pyDML: A Python Library for Distance Metric Learning.
原文链接
谷歌学术
必应学术
百度学术
Scalable Approximate MCMC Algorithms for the Horseshoe Prior.
原文链接
谷歌学术
必应学术
百度学术
Dynamical Systems as Temporal Feature Spaces.
原文链接
谷歌学术
必应学术
百度学术
Conjugate Gradients for Kernel Machines.
原文链接
谷歌学术
必应学术
百度学术
Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement.
原文链接
谷歌学术
必应学术
百度学术
Semi-parametric Learning of Structured Temporal Point Processes.
原文链接
谷歌学术
必应学术
百度学术
Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers.
原文链接
谷歌学术
必应学术
百度学术
Prediction regions through Inverse Regression.
原文链接
谷歌学术
必应学术
百度学术
Random Smoothing Might be Unable to Certify L∞ Robustness for High-Dimensional Images.
原文链接
谷歌学术
必应学术
百度学术
Asymptotic Consistency of α-Rényi-Approximate Posteriors.
原文链接
谷歌学术
必应学术
百度学术
A New Class of Time Dependent Latent Factor Models with Applications.
原文链接
谷歌学术
必应学术
百度学术
A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints.
原文链接
谷歌学术
必应学术
百度学术
Discerning the Linear Convergence of ADMM for Structured Convex Optimization through the Lens of Variational Analysis.
原文链接
谷歌学术
必应学术
百度学术
Identifiability of Additive Noise Models Using Conditional Variances.
原文链接
谷歌学术
必应学术
百度学术
High-dimensional Linear Discriminant Analysis Classifier for Spiked Covariance Model.
原文链接
谷歌学术
必应学术
百度学术
Effective Ways to Build and Evaluate Individual Survival Distributions.
原文链接
谷歌学术
必应学术
百度学术
Kernel-estimated Nonparametric Overlap-Based Syncytial Clustering.
原文链接
谷歌学术
必应学术
百度学术
ProtoAttend: Attention-Based Prototypical Learning.
原文链接
谷歌学术
必应学术
百度学术
A General System of Differential Equations to Model First-Order Adaptive Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Learning Big Gaussian Bayesian Networks: Partition, Estimation and Fusion.
原文链接
谷歌学术
必应学术
百度学术
Joint Causal Inference from Multiple Contexts.
原文链接
谷歌学术
必应学术
百度学术
Branch and Bound for Piecewise Linear Neural Network Verification.
原文链接
谷歌学术
必应学术
百度学术
Learning Data-adaptive Non-parametric Kernels.
原文链接
谷歌学术
必应学术
百度学术
Contextual Explanation Networks.
原文链接
谷歌学术
必应学术
百度学术
Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables.
原文链接
谷歌学术
必应学术
百度学术
Breaking the Curse of Nonregularity with Subagging - Inference of the Mean Outcome under Optimal Treatment Regimes.
原文链接
谷歌学术
必应学术
百度学术
Generalized probabilistic principal component analysis of correlated data.
原文链接
谷歌学术
必应学术
百度学术
Distributionally Ambiguous Optimization for Batch Bayesian Optimization.
原文链接
谷歌学术
必应学术
百度学术
Distributed High-dimensional Regression Under a Quantile Loss Function.
原文链接
谷歌学术
必应学术
百度学术
Nesterov's Acceleration for Approximate Newton.
原文链接
谷歌学术
必应学术
百度学术
Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning.
原文链接
谷歌学术
必应学术
百度学术
Sparse Projection Oblique Randomer Forests.
原文链接
谷歌学术
必应学术
百度学术
Connecting Spectral Clustering to Maximum Margins and Level Sets.
原文链接
谷歌学术
必应学术
百度学术
DESlib: A Dynamic ensemble selection library in Python.
原文链接
谷歌学术
必应学术
百度学术
scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn.
原文链接
谷歌学术
必应学术
百度学术
Near-optimal Individualized Treatment Recommendations.
原文链接
谷歌学术
必应学术
百度学术
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients.
原文链接
谷歌学术
必应学术
百度学术
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy.
原文链接
谷歌学术
必应学术
百度学术
Generalized Optimal Matching Methods for Causal Inference.
原文链接
谷歌学术
必应学术
百度学术
Multi-Player Bandits: The Adversarial Case.
原文链接
谷歌学术
必应学术
百度学术
Wide Neural Networks with Bottlenecks are Deep Gaussian Processes.
原文链接
谷歌学术
必应学术
百度学术
On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent.
原文链接
谷歌学术
必应学术
百度学术
Adaptive Smoothing for Path Integral Control.
原文链接
谷歌学术
必应学术
百度学术
Empirical Priors for Prediction in Sparse High-dimensional Linear Regression.
原文链接
谷歌学术
必应学术
百度学术
On Mahalanobis Distance in Functional Settings.
原文链接
谷歌学术
必应学术
百度学术
Learning with Fenchel-Young losses.
原文链接
谷歌学术
必应学术
百度学术
Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data.
原文链接
谷歌学术
必应学术
百度学术
Target-Aware Bayesian Inference: How to Beat Optimal Conventional Estimators.
原文链接
谷歌学术
必应学术
百度学术
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.
原文链接
谷歌学术
必应学术
百度学术
Orlicz Random Fourier Features.
原文链接
谷歌学术
必应学术
百度学术
Neyman-Pearson classification: parametrics and sample size requirement.
原文链接
谷歌学术
必应学术
百度学术
The Optimal Ridge Penalty for Real-world High-dimensional Data Can Be Zero or Negative due to the Implicit Ridge Regularization.
原文链接
谷歌学术
必应学术
百度学术
Scikit-network: Graph Analysis in Python.
原文链接
谷歌学术
必应学术
百度学术
Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information.
原文链接
谷歌学术
必应学术
百度学术
A Model of Fake Data in Data-driven Analysis.
原文链接
谷歌学术
必应学术
百度学术
Noise Accumulation in High Dimensional Classification and Total Signal Index.
原文链接
谷歌学术
必应学术
百度学术
Dynamic Assortment Optimization with Changing Contextual Information.
原文链接
谷歌学术
必应学术
百度学术
The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response.
原文链接
谷歌学术
必应学术
百度学术
Simultaneous Inference for Pairwise Graphical Models with Generalized Score Matching.
原文链接
谷歌学术
必应学术
百度学术
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization.
原文链接
谷歌学术
必应学术
百度学术
Loss Control with Rank-one Covariance Estimate for Short-term Portfolio Optimization.
原文链接
谷歌学术
必应学术
百度学术
Rationally Inattentive Inverse Reinforcement Learning Explains YouTube Commenting Behavior.
原文链接
谷歌学术
必应学术
百度学术
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
原文链接
谷歌学术
必应学术
百度学术
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly.
原文链接
谷歌学术
必应学术
百度学术
Conic Optimization for Quadratic Regression Under Sparse Noise.
原文链接
谷歌学术
必应学术
百度学术
Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis.
原文链接
谷歌学术
必应学术
百度学术
Convergence Rate of Optimal Quantization and Application to the Clustering Performance of the Empirical Measure.
原文链接
谷歌学术
必应学术
百度学术
GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing.
原文链接
谷歌学术
必应学术
百度学术
Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping.
原文链接
谷歌学术
必应学术
百度学术
Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms.
原文链接
谷歌学术
必应学术
百度学术
Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections.
原文链接
谷歌学术
必应学术
百度学术
A Convex Parametrization of a New Class of Universal Kernel Functions.
原文链接
谷歌学术
必应学术
百度学术
Generalized Nonbacktracking Bounds on the Influence.
原文链接
谷歌学术
必应学术
百度学术
A General Framework for Consistent Structured Prediction with Implicit Loss Embeddings.
原文链接
谷歌学术
必应学术
百度学术
Generative Adversarial Nets for Robust Scatter Estimation: A Proper Scoring Rule Perspective.
原文链接
谷歌学术
必应学术
百度学术
Generating Weighted MAX-2-SAT Instances with Frustrated Loops: an RBM Case Study.
原文链接
谷歌学术
必应学术
百度学术
Causal Discovery Toolbox: Uncovering causal relationships in Python.
原文链接
谷歌学术
必应学术
百度学术
Tensor Train Decomposition on TensorFlow (T3F).
原文链接
谷歌学术
必应学术
百度学术
Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models.
原文链接
谷歌学术
必应学术
百度学术
Probabilistic Learning on Graphs via Contextual Architectures.
原文链接
谷歌学术
必应学术
百度学术
Two-Stage Approach to Multivariate Linear Regression with Sparsely Mismatched Data.
原文链接
谷歌学术
必应学术
百度学术
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints.
原文链接
谷歌学术
必应学术
百度学术
Quadratic Decomposable Submodular Function Minimization: Theory and Practice.
原文链接
谷歌学术
必应学术
百度学术
Bayesian Closed Surface Fitting Through Tensor Products.
原文链接
谷歌学术
必应学术
百度学术
Variational Inference for Computational Imaging Inverse Problems.
原文链接
谷歌学术
必应学术
百度学术
Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise.
原文链接
谷歌学术
必应学术
百度学术
Dual Iterative Hard Thresholding.
原文链接
谷歌学术
必应学术
百度学术
Online Sufficient Dimension Reduction Through Sliced Inverse Regression.
原文链接
谷歌学术
必应学术
百度学术
Functional Martingale Residual Process for High-Dimensional Cox Regression with Model Averaging.
原文链接
谷歌学术
必应学术
百度学术
Apache Mahout: Machine Learning on Distributed Dataflow Systems.
原文链接
谷歌学术
必应学术
百度学术
Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent.
原文链接
谷歌学术
必应学术
百度学术
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation.
原文链接
谷歌学术
必应学术
百度学术
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey.
原文链接
谷歌学术
必应学术
百度学术
Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information.
原文链接
谷歌学术
必应学术
百度学术
Kymatio: Scattering Transforms in Python.
原文链接
谷歌学术
必应学术
百度学术
Regularized Gaussian Belief Propagation with Nodes of Arbitrary Size.
原文链接
谷歌学术
必应学术
百度学术
Beyond Trees: Classification with Sparse Pairwise Dependencies.
原文链接
谷歌学术
必应学术
百度学术
Minimax Nonparametric Parallelism Test.
原文链接
谷歌学术
必应学术
百度学术