数据学习
AI博客
原创AI博客
大模型技术博客
期刊会议
学术世界
期刊出版社
领域期刊
SCI/SCIE/SSCI/EI简介
期刊列表
会议列表
所有期刊分区
学术期刊信息检索
JCR期刊分区查询
CiteScore期刊分区查询
中科院期刊分区查询
管理 - UTD24期刊列表
管理 - AJG(ABS)期刊星级查询
管理 - FMS推荐期刊列表
计算机 - CCF推荐期刊会议列表
南大核心(CSSCI)
合工大小核心
合工大大核心
AI资源仓库
AI领域与任务
AI研究机构
AI学术期刊
AI论文快讯
AI数据集
AI开源工具
数据推荐
AI大模型
国产AI大模型生态全览
AI模型概览图
AI模型月报
AI基础大模型
AI大模型排行榜
大模型综合能力排行榜
大模型编程能力排行榜
LMSys ChatBot Arena排行榜
Berkeley大模型工具使用能力排行榜
OpenLLMLeaderboard中国站
AI大模型大全
大模型部署教程
在线聊天大模型列表
2023年度AI产品总结
期刊列表
Journal of Machine Learning Research
Issue 26
Journal of Machine Learning Research
(JMLR)
-
Issue 26
论文列表
点击这里查看 Journal of Machine Learning Research 的JCR分区、影响因子等信息
卷期号:
Issue 26
发布时间:
卷期年份:
2021
卷期官网:
本期论文列表
Generalization Performance of Multi-pass Stochastic Gradient Descent with Convex Loss Functions.
原文链接
谷歌学术
必应学术
百度学术
Stochastic Proximal Methods for Non-Smooth Non-Convex Constrained Sparse Optimization.
原文链接
谷歌学术
必应学术
百度学术
Thompson Sampling Algorithms for Cascading Bandits.
原文链接
谷歌学术
必应学术
百度学术
Homogeneity Structure Learning in Large-scale Panel Data with Heavy-tailed Errors.
原文链接
谷歌学术
必应学术
百度学术
Non-linear, Sparse Dimensionality Reduction via Path Lasso Penalized Autoencoders.
原文链接
谷歌学术
必应学术
百度学术
LocalGAN: Modeling Local Distributions for Adversarial Response Generation.
原文链接
谷歌学术
必应学术
百度学术
Model Linkage Selection for Cooperative Learning.
原文链接
谷歌学术
必应学术
百度学术
Pathwise Conditioning of Gaussian Processes.
原文链接
谷歌学术
必应学术
百度学术
Bifurcation Spiking Neural Network.
原文链接
谷歌学术
必应学术
百度学术
Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks.
原文链接
谷歌学术
必应学术
百度学术
Optimal Structured Principal Subspace Estimation: Metric Entropy and Minimax Rates.
原文链接
谷歌学术
必应学术
百度学术
A Greedy Algorithm for Quantizing Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Neighborhood Structure Assisted Non-negative Matrix Factorization and Its Application in Unsupervised Point-wise Anomaly Detection.
原文链接
谷歌学术
必应学术
百度学术
MushroomRL: Simplifying Reinforcement Learning Research.
原文链接
谷歌学术
必应学术
百度学术
Locally Differentially-Private Randomized Response for Discrete Distribution Learning.
原文链接
谷歌学术
必应学术
百度学术
When random initializations help: a study of variational inference for community detection.
原文链接
谷歌学术
必应学术
百度学术
Consensus-Based Optimization on the Sphere: Convergence to Global Minimizers and Machine Learning.
原文链接
谷歌学术
必应学术
百度学术
VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning.
原文链接
谷歌学术
必应学术
百度学术
Bandit Convex Optimization in Non-stationary Environments.
原文链接
谷歌学术
必应学术
百度学术
Sparse Convex Optimization via Adaptively Regularized Hard Thresholding.
原文链接
谷歌学术
必应学术
百度学术
Testing Conditional Independence via Quantile Regression Based Partial Copulas.
原文链接
谷歌学术
必应学术
百度学术
A Lyapunov Analysis of Accelerated Methods in Optimization.
原文链接
谷歌学术
必应学术
百度学术
Further results on latent discourse models and word embeddings.
原文链接
谷歌学术
必应学术
百度学术
Langevin Dynamics for Adaptive Inverse Reinforcement Learning of Stochastic Gradient Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Revisiting Model-Agnostic Private Learning: Faster Rates and Active Learning.
原文链接
谷歌学术
必应学术
百度学术
Banach Space Representer Theorems for Neural Networks and Ridge Splines.
原文链接
谷歌学术
必应学术
百度学术
Empirical Bayes Matrix Factorization.
原文链接
谷歌学术
必应学术
百度学术
Approximate Newton Methods.
原文链接
谷歌学术
必应学术
百度学术
The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
A Unified Convergence Analysis for Shuffling-Type Gradient Methods.
原文链接
谷歌学术
必应学术
百度学术
A General Framework for Adversarial Label Learning.
原文链接
谷歌学术
必应学术
百度学术
Simple and Fast Algorithms for Interactive Machine Learning with Random Counter-examples.
原文链接
谷歌学术
必应学术
百度学术
Explaining by Removing: A Unified Framework for Model Explanation.
原文链接
谷歌学术
必应学术
百度学术
Prediction Under Latent Factor Regression: Adaptive PCR, Interpolating Predictors and Beyond.
原文链接
谷歌学术
必应学术
百度学术
Sparse and Smooth Signal Estimation: Convexification of L0-Formulations.
原文链接
谷歌学术
必应学术
百度学术
Nonparametric Continuous Sensor Registration.
原文链接
谷歌学术
必应学术
百度学术
Guided Visual Exploration of Relations in Data Sets.
原文链接
谷歌学术
必应学术
百度学术
ChainerRL: A Deep Reinforcement Learning Library.
原文链接
谷歌学术
必应学术
百度学术
Learning Laplacian Matrix from Graph Signals with Sparse Spectral Representation.
原文链接
谷歌学术
必应学术
百度学术
Generalization Properties of hyper-RKHS and its Applications.
原文链接
谷歌学术
必应学术
百度学术
Consistency of Gaussian Process Regression in Metric Spaces.
原文链接
谷歌学术
必应学术
百度学术
FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference.
原文链接
谷歌学术
必应学术
百度学术
Expanding Boundaries of Gap Safe Screening.
原文链接
谷歌学术
必应学术
百度学术
Refined approachability algorithms and application to regret minimization with global costs.
原文链接
谷歌学术
必应学术
百度学术
Is SGD a Bayesian sampler? Well, almost.
原文链接
谷歌学术
必应学术
百度学术
Cooperative SGD: A Unified Framework for the Design and Analysis of Local-Update SGD Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Partial Policy Iteration for L1-Robust Markov Decision Processes.
原文链接
谷歌学术
必应学术
百度学术
Kernel Smoothing, Mean Shift, and Their Learning Theory with Directional Data.
原文链接
谷歌学术
必应学术
百度学术
Bayesian Distance Clustering.
原文链接
谷歌学术
必应学术
百度学术
Double Generative Adversarial Networks for Conditional Independence Testing.
原文链接
谷歌学术
必应学术
百度学术
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm.
原文链接
谷歌学术
必应学术
百度学术
Soft Tensor Regression.
原文链接
谷歌学术
必应学术
百度学术
Convolutional Neural Networks Are Not Invariant to Translation, but They Can Learn to Be.
原文链接
谷歌学术
必应学术
百度学术
DIG: A Turnkey Library for Diving into Graph Deep Learning Research.
原文链接
谷歌学术
必应学术
百度学术
A Two-Level Decomposition Framework Exploiting First and Second Order Information for SVM Training Problems.
原文链接
谷歌学术
必应学术
百度学术
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings.
原文链接
谷歌学术
必应学术
百度学术
mlr3pipelines - Flexible Machine Learning Pipelines in R.
原文链接
谷歌学术
必应学术
百度学术
Learning Bayesian Networks from Ordinal Data.
原文链接
谷歌学术
必应学术
百度学术
A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning.
原文链接
谷歌学术
必应学术
百度学术
Failures of Model-dependent Generalization Bounds for Least-norm Interpolation.
原文链接
谷歌学术
必应学术
百度学术
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness.
原文链接
谷歌学术
必应学术
百度学术
Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals.
原文链接
谷歌学术
必应学术
百度学术
Estimating the Lasso's Effective Noise.
原文链接
谷歌学术
必应学术
百度学术
Stochastic Online Optimization using Kalman Recursion.
原文链接
谷歌学术
必应学术
百度学术
Tractable Approximate Gaussian Inference for Bayesian Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Interpretable Deep Generative Recommendation Models.
原文链接
谷歌学术
必应学术
百度学术
Non-parametric Quantile Regression via the K-NN Fused Lasso.
原文链接
谷歌学术
必应学术
百度学术
Projection-free Decentralized Online Learning for Submodular Maximization over Time-Varying Networks.
原文链接
谷歌学术
必应学术
百度学术
Global and Quadratic Convergence of Newton Hard-Thresholding Pursuit.
原文链接
谷歌学术
必应学术
百度学术
Are We Forgetting about Compositional Optimisers in Bayesian Optimisation?
原文链接
谷歌学术
必应学术
百度学术
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms.
原文链接
谷歌学术
必应学术
百度学术
Entangled Kernels - Beyond Separability.
原文链接
谷歌学术
必应学术
百度学术
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks.
原文链接
谷歌学术
必应学术
百度学术
Contrastive Estimation Reveals Topic Posterior Information to Linear Models.
原文链接
谷歌学术
必应学术
百度学术
Histogram Transform Ensembles for Large-scale Regression.
原文链接
谷歌学术
必应学术
百度学术
COKE: Communication-Censored Decentralized Kernel Learning.
原文链接
谷歌学术
必应学术
百度学术
Gradient Methods Never Overfit On Separable Data.
原文链接
谷歌学术
必应学术
百度学术
As You Like It: Localization via Paired Comparisons.
原文链接
谷歌学术
必应学术
百度学术
A Theory of the Risk for Optimization with Relaxation and its Application to Support Vector Machines.
原文链接
谷歌学术
必应学术
百度学术
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family.
原文链接
谷歌学术
必应学术
百度学术
On the Stability Properties and the Optimization Landscape of Training Problems with Squared Loss for Neural Networks and General Nonlinear Conic Approximation Schemes.
原文链接
谷歌学术
必应学术
百度学术
Wasserstein barycenters can be computed in polynomial time in fixed dimension.
原文链接
谷歌学术
必应学术
百度学术
mvlearn: Multiview Machine Learning in Python.
原文链接
谷歌学术
必应学术
百度学术
First-order Convergence Theory for Weakly-Convex-Weakly-Concave Min-max Problems.
原文链接
谷歌学术
必应学术
百度学术
Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models.
原文链接
谷歌学术
必应学术
百度学术
Shape-Enforcing Operators for Generic Point and Interval Estimators of Functions.
原文链接
谷歌学术
必应学术
百度学术
A Unified Sample Selection Framework for Output Noise Filtering: An Error-Bound Perspective.
原文链接
谷歌学术
必应学术
百度学术
Individual Fairness in Hindsight.
原文链接
谷歌学术
必应学术
百度学术
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis.
原文链接
谷歌学术
必应学术
百度学术
Benchmarking Unsupervised Object Representations for Video Sequences.
原文链接
谷歌学术
必应学术
百度学术
dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python.
原文链接
谷歌学术
必应学术
百度学术
Adaptive estimation of nonparametric functionals.
原文链接
谷歌学术
必应学术
百度学术
On lp-hyperparameter Learning via Bilevel Nonsmooth Optimization.
原文链接
谷歌学术
必应学术
百度学术
Learning Sparse Classifiers: Continuous and Mixed Integer Optimization Perspectives.
原文链接
谷歌学术
必应学术
百度学术
Learning with semi-definite programming: statistical bounds based on fixed point analysis and excess risk curvature.
原文链接
谷歌学术
必应学术
百度学术
An Inertial Newton Algorithm for Deep Learning.
原文链接
谷歌学术
必应学术
百度学术
Doubly infinite residual neural networks: a diffusion process approach.
原文链接
谷歌学术
必应学术
百度学术
Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach.
原文链接
谷歌学术
必应学术
百度学术
Residual Energy-Based Models for Text.
原文链接
谷歌学术
必应学术
百度学术
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory.
原文链接
谷歌学术
必应学术
百度学术
Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation.
原文链接
谷歌学术
必应学术
百度学术
Multi-class Gaussian Process Classification with Noisy Inputs.
原文链接
谷歌学术
必应学术
百度学术
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift.
原文链接
谷歌学术
必应学术
百度学术
Alibi Explain: Algorithms for Explaining Machine Learning Models.
原文链接
谷歌学术
必应学术
百度学术
Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations.
原文链接
谷歌学术
必应学术
百度学术
Exact Asymptotics for Linear Quadratic Adaptive Control.
原文链接
谷歌学术
必应学术
百度学术
Oblivious Data for Fairness with Kernels.
原文链接
谷歌学术
必应学术
百度学术
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Estimation and Optimization of Composite Outcomes.
原文链接
谷歌学术
必应学术
百度学术
Universal consistency and rates of convergence of multiclass prototype algorithms in metric spaces.
原文链接
谷歌学术
必应学术
百度学术
Locally Private k-Means Clustering.
原文链接
谷歌学术
必应学术
百度学术
Single and Multiple Change-Point Detection with Differential Privacy.
原文链接
谷歌学术
必应学术
百度学术
Pseudo-Marginal Hamiltonian Monte Carlo.
原文链接
谷歌学术
必应学术
百度学术
Information criteria for non-normalized models.
原文链接
谷歌学术
必应学术
百度学术
An Importance Weighted Feature Selection Stability Measure.
原文链接
谷歌学术
必应学术
百度学术
Determining the Number of Communities in Degree-corrected Stochastic Block Models.
原文链接
谷歌学术
必应学术
百度学术
Subspace Clustering through Sub-Clusters.
原文链接
谷歌学术
必应学术
百度学术
A Distributed Method for Fitting Laplacian Regularized Stratified Models.
原文链接
谷歌学术
必应学术
百度学术
V-statistics and Variance Estimation.
原文链接
谷歌学术
必应学术
百度学术
sklvq: Scikit Learning Vector Quantization.
原文链接
谷歌学术
必应学术
百度学术
Batch greedy maximization of non-submodular functions: Guarantees and applications to experimental design.
原文链接
谷歌学术
必应学术
百度学术
Consistent estimation of small masses in feature sampling.
原文链接
谷歌学术
必应学术
百度学术
Nonparametric Modeling of Higher-Order Interactions via Hypergraphons.
原文链接
谷歌学术
必应学术
百度学术
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads.
原文链接
谷歌学术
必应学术
百度学术
ROOTS: Object-Centric Representation and Rendering of 3D Scenes.
原文链接
谷歌学术
必应学术
百度学术
Linear Bandits on Uniformly Convex Sets.
原文链接
谷歌学术
必应学术
百度学术
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks.
原文链接
谷歌学术
必应学术
百度学术
Structure Learning of Undirected Graphical Models for Count Data.
原文链接
谷歌学术
必应学术
百度学术
On Solving Probabilistic Linear Diophantine Equations.
原文链接
谷歌学术
必应学术
百度学术
On efficient multilevel Clustering via Wasserstein distances.
原文链接
谷歌学术
必应学术
百度学术
One-Shot Federated Learning: Theoretical Limits and Algorithms to Achieve Them.
原文链接
谷歌学术
必应学术
百度学术
Optimal Rates of Distributed Regression with Imperfect Kernels.
原文链接
谷歌学术
必应学术
百度学术
Replica Exchange for Non-Convex Optimization.
原文链接
谷歌学术
必应学术
百度学术
LDLE: Low Distortion Local Eigenmaps.
原文链接
谷歌学术
必应学术
百度学术
A Contextual Bandit Bake-off.
原文链接
谷歌学术
必应学术
百度学术
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent.
原文链接
谷歌学术
必应学术
百度学术
Optimal Bounds between f-Divergences and Integral Probability Metrics.
原文链接
谷歌学术
必应学术
百度学术
Mode-wise Tensor Decompositions: Multi-dimensional Generalizations of CUR Decompositions.
原文链接
谷歌学术
必应学术
百度学术
Regularized spectral methods for clustering signed networks.
原文链接
谷歌学术
必应学术
百度学术
Regulating Greed Over Time in Multi-Armed Bandits.
原文链接
谷歌学术
必应学术
百度学术
Bayesian time-aligned factor analysis of paired multivariate time series.
原文链接
谷歌学术
必应学术
百度学术
A general linear-time inference method for Gaussian Processes on one dimension.
原文链接
谷歌学术
必应学术
百度学术
Learning partial correlation graphs and graphical models by covariance queries.
原文链接
谷歌学术
必应学术
百度学术
LassoNet: A Neural Network with Feature Sparsity.
原文链接
谷歌学术
必应学术
百度学术
On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests.
原文链接
谷歌学术
必应学术
百度学术
Some Theoretical Insights into Wasserstein GANs.
原文链接
谷歌学术
必应学术
百度学术
Statistical Query Lower Bounds for Tensor PCA.
原文链接
谷歌学术
必应学术
百度学术
Counterfactual Mean Embeddings.
原文链接
谷歌学术
必应学术
百度学术
Hamilton-Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems with Lipschitz Continuous Controls.
原文链接
谷歌学术
必应学术
百度学术
Learning a High-dimensional Linear Structural Equation Model via l1-Regularized Regression.
原文链接
谷歌学术
必应学术
百度学术
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization.
原文链接
谷歌学术
必应学术
百度学术
Black-Box Reductions for Zeroth-Order Gradient Algorithms to Achieve Lower Query Complexity.
原文链接
谷歌学术
必应学术
百度学术
Prediction against a limited adversary.
原文链接
谷歌学术
必应学术
百度学术
Sparse Popularity Adjusted Stochastic Block Model.
原文链接
谷歌学术
必应学术
百度学术
The Decoupled Extended Kalman Filter for Dynamic Exponential-Family Factorization Models.
原文链接
谷歌学术
必应学术
百度学术
GemBag: Group Estimation of Multiple Bayesian Graphical Models.
原文链接
谷歌学术
必应学术
百度学术
Learning interaction kernels in heterogeneous systems of agents from multiple trajectories.
原文链接
谷歌学术
必应学术
百度学术
NUQSGD: Provably Communication-efficient Data-parallel SGD via Nonuniform Quantization.
原文链接
谷歌学术
必应学术
百度学术
Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression.
原文链接
谷歌学术
必应学术
百度学术
Risk Bounds for Unsupervised Cross-Domain Mapping with IPMs.
原文链接
谷歌学术
必应学术
百度学术
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning.
原文链接
谷歌学术
必应学术
百度学术
Quasi-Monte Carlo Quasi-Newton in Variational Bayes.
原文链接
谷歌学术
必应学术
百度学术
Aggregated Hold-Out.
原文链接
谷歌学术
必应学术
百度学术
Collusion Detection and Ground Truth Inference in Crowdsourcing for Labeling Tasks.
原文链接
谷歌学术
必应学术
百度学术
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning.
原文链接
谷歌学术
必应学术
百度学术
Kernel Operations on the GPU, with Autodiff, without Memory Overflows.
原文链接
谷歌学术
必应学术
百度学术
A Unified Analysis of First-Order Methods for Smooth Games via Integral Quadratic Constraints.
原文链接
谷歌学术
必应学术
百度学术
Pykg2vec: A Python Library for Knowledge Graph Embedding.
原文链接
谷歌学术
必应学术
百度学术
Risk-Averse Learning by Temporal Difference Methods with Markov Risk Measures.
原文链接
谷歌学术
必应学术
百度学术
Safe Policy Iteration: A Monotonically Improving Approximate Policy Iteration Approach.
原文链接
谷歌学术
必应学术
百度学术
Integrated Principal Components Analysis.
原文链接
谷歌学术
必应学术
百度学术
Optimal Minimax Variable Selection for Large-Scale Matrix Linear Regression Model.
原文链接
谷歌学术
必应学术
百度学术
When Does Gradient Descent with Logistic Loss Find Interpolating Two-Layer Networks?
原文链接
谷歌学术
必应学术
百度学术
Geometric structure of graph Laplacian embeddings.
原文链接
谷歌学术
必应学术
百度学术
Unlinked Monotone Regression.
原文链接
谷歌学术
必应学术
百度学术
Stable-Baselines3: Reliable Reinforcement Learning Implementations.
原文链接
谷歌学术
必应学术
百度学术
An Online Sequential Test for Qualitative Treatment Effects.
原文链接
谷歌学术
必应学术
百度学术
On Universal Approximation and Error Bounds for Fourier Neural Operators.
原文链接
谷歌学术
必应学术
百度学术
A Unified Framework for Random Forest Prediction Error Estimation.
原文链接
谷歌学术
必应学术
百度学术
Learning Whenever Learning is Possible: Universal Learning under General Stochastic Processes.
原文链接
谷歌学术
必应学术
百度学术
Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic Perspectives.
原文链接
谷歌学术
必应学术
百度学术
Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data.
原文链接
谷歌学术
必应学术
百度学术
Particle-Gibbs Sampling for Bayesian Feature Allocation Models.
原文链接
谷歌学术
必应学术
百度学术
On ADMM in Deep Learning: Convergence and Saturation-Avoidance.
原文链接
谷歌学术
必应学术
百度学术
Tighter Risk Certificates for Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Ranking and synchronization from pairwise measurements via SVD.
原文链接
谷歌学术
必应学术
百度学术
Conditional independences and causal relations implied by sets of equations.
原文链接
谷歌学术
必应学术
百度学术
OpenML-Python: an extensible Python API for OpenML.
原文链接
谷歌学术
必应学术
百度学术
Consistent Semi-Supervised Graph Regularization for High Dimensional Data.
原文链接
谷歌学术
必应学术
百度学术
From Low Probability to High Confidence in Stochastic Convex Optimization.
原文链接
谷歌学术
必应学术
百度学术
Transferability of Spectral Graph Convolutional Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Langevin Monte Carlo: random coordinate descent and variance reduction.
原文链接
谷歌学术
必应学术
百度学术
The ensmallen library for flexible numerical optimization.
原文链接
谷歌学术
必应学术
百度学术
Statistical Guarantees for Local Spectral Clustering on Random Neighborhood Graphs.
原文链接
谷歌学术
必应学术
百度学术
Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo.
原文链接
谷歌学术
必应学术
百度学术
A Unified Framework for Spectral Clustering in Sparse Graphs.
原文链接
谷歌学术
必应学术
百度学术
PeerReview4All: Fair and Accurate Reviewer Assignment in Peer Review.
原文链接
谷歌学术
必应学术
百度学术
Classification vs regression in overparameterized regimes: Does the loss function matter?
原文链接
谷歌学术
必应学术
百度学术
FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection.
原文链接
谷歌学术
必应学术
百度学术
Statistically and Computationally Efficient Change Point Localization in Regression Settings.
原文链接
谷歌学术
必应学术
百度学术
DeEPCA: Decentralized Exact PCA with Linear Convergence Rate.
原文链接
谷歌学术
必应学术
百度学术
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms.
原文链接
谷歌学术
必应学术
百度学术
Reproducing kernel Hilbert C*-module and kernel mean embeddings.
原文链接
谷歌学术
必应学术
百度学术
Optimized Score Transformation for Consistent Fair Classification.
原文链接
谷歌学术
必应学术
百度学术
A flexible model-free prediction-based framework for feature ranking.
原文链接
谷歌学术
必应学术
百度学术
An algorithmic view of L2 regularization and some path-following algorithms.
原文链接
谷歌学术
必应学术
百度学术
Implicit Langevin Algorithms for Sampling From Log-concave Densities.
原文链接
谷歌学术
必应学术
百度学术
GIBBON: General-purpose Information-Based Bayesian Optimisation.
原文链接
谷歌学术
必应学术
百度学术
Normalizing Flows for Probabilistic Modeling and Inference.
原文链接
谷歌学术
必应学术
百度学术
Beyond English-Centric Multilingual Machine Translation.
原文链接
谷歌学术
必应学术
百度学术
Statistical guarantees for local graph clustering.
原文链接
谷歌学术
必应学术
百度学术
Communication-Efficient Distributed Covariance Sketch, with Application to Distributed PCA.
原文链接
谷歌学术
必应学术
百度学术
River: machine learning for streaming data in Python.
原文链接
谷歌学术
必应学术
百度学术
L-SVRG and L-Katyusha with Arbitrary Sampling.
原文链接
谷歌学术
必应学术
百度学术
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation.
原文链接
谷歌学术
必应学术
百度学术
On Multi-Armed Bandit Designs for Dose-Finding Trials.
原文链接
谷歌学术
必应学术
百度学术
Matrix Product States for Inference in Discrete Probabilistic Models.
原文链接
谷歌学术
必应学术
百度学术
Context-dependent Networks in Multivariate Time Series: Models, Methods, and Risk Bounds in High Dimensions.
原文链接
谷歌学术
必应学术
百度学术
Simultaneous Change Point Inference and Structure Recovery for High Dimensional Gaussian Graphical Models.
原文链接
谷歌学术
必应学术
百度学术
Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm.
原文链接
谷歌学术
必应学术
百度学术
Learning Strategies in Decentralized Matching Markets under Uncertain Preferences.
原文链接
谷歌学术
必应学术
百度学术
Estimating Uncertainty Intervals from Collaborating Networks.
原文链接
谷歌学术
必应学术
百度学术
On the Hardness of Robust Classification.
原文链接
谷歌学术
必应学术
百度学术
Probabilistic Iterative Methods for Linear Systems.
原文链接
谷歌学术
必应学术
百度学术
Hybrid Predictive Models: When an Interpretable Model Collaborates with a Black-box Model.
原文链接
谷歌学术
必应学术
百度学术
POT: Python Optimal Transport.
原文链接
谷歌学术
必应学术
百度学术
Bayesian Text Classification and Summarization via A Class-Specified Topic Model.
原文链接
谷歌学术
必应学术
百度学术
Bandit Learning in Decentralized Matching Markets.
原文链接
谷歌学术
必应学术
百度学术
Achieving Fairness in the Stochastic Multi-Armed Bandit Problem.
原文链接
谷歌学术
必应学术
百度学术
Predictive Learning on Hidden Tree-Structured Ising Models.
原文链接
谷歌学术
必应学术
百度学术
Variance Reduced Median-of-Means Estimator for Byzantine-Robust Distributed Inference.
原文链接
谷歌学术
必应学术
百度学术
Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace.
原文链接
谷歌学术
必应学术
百度学术
Improved Shrinkage Prediction under a Spiked Covariance Structure.
原文链接
谷歌学术
必应学术
百度学术
Phase Diagram for Two-layer ReLU Neural Networks at Infinite-width Limit.
原文链接
谷歌学术
必应学术
百度学术
Analysis of high-dimensional Continuous Time Markov Chains using the Local Bouncy Particle Sampler.
原文链接
谷歌学术
必应学术
百度学术
CAT: Compression-Aware Training for bandwidth reduction.
原文链接
谷歌学术
必应学术
百度学术
Finite Time LTI System Identification.
原文链接
谷歌学术
必应学术
百度学术
A Bayes-Optimal View on Adversarial Examples.
原文链接
谷歌学术
必应学术
百度学术
Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage.
原文链接
谷歌学术
必应学术
百度学术
Gaussian Approximation for Bias Reduction in Q-Learning.
原文链接
谷歌学术
必应学术
百度学术
An Empirical Study of Bayesian Optimization: Acquisition Versus Partition.
原文链接
谷歌学术
必应学术
百度学术
Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits.
原文链接
谷歌学术
必应学术
百度学术
Asymptotic Normality, Concentration, and Coverage of Generalized Posteriors.
原文链接
谷歌学术
必应学术
百度学术
giotto-tda: : A Topological Data Analysis Toolkit for Machine Learning and Data Exploration.
原文链接
谷歌学术
必应学术
百度学术
Domain adaptation under structural causal models.
原文链接
谷歌学术
必应学术
百度学术
How Well Generative Adversarial Networks Learn Distributions.
原文链接
谷歌学术
必应学术
百度学术
Limit theorems for out-of-sample extensions of the adjacency and Laplacian spectral embeddings.
原文链接
谷歌学术
必应学术
百度学术
On the Estimation of Network Complexity: Dimension of Graphons.
原文链接
谷歌学术
必应学术
百度学术
Knowing what You Know: valid and validated confidence sets in multiclass and multilabel prediction.
原文链接
谷歌学术
必应学术
百度学术
Incorporating Unlabeled Data into Distributionally Robust Learning.
原文链接
谷歌学术
必应学术
百度学术
Inference In High-dimensional Single-Index Models Under Symmetric Designs.
原文链接
谷歌学术
必应学术
百度学术
Path Length Bounds for Gradient Descent and Flow.
原文链接
谷歌学术
必应学术
百度学术
A Generalised Linear Model Framework for β-Variational Autoencoders based on Exponential Dispersion Families.
原文链接
谷歌学术
必应学术
百度学术
Differentially Private Regression and Classification with Sparse Gaussian Processes.
原文链接
谷歌学术
必应学术
百度学术
Multilevel Monte Carlo Variational Inference.
原文链接
谷歌学术
必应学术
百度学术
RaSE: Random Subspace Ensemble Classification.
原文链接
谷歌学术
必应学术
百度学术
Continuous Time Analysis of Momentum Methods.
原文链接
谷歌学术
必应学术
百度学术
Unfolding-Model-Based Visualization: Theory, Method and Applications.
原文链接
谷歌学术
必应学术
百度学术
Asynchronous Online Testing of Multiple Hypotheses.
原文链接
谷歌学术
必应学术
百度学术
Preference-based Online Learning with Dueling Bandits: A Survey.
原文链接
谷歌学术
必应学术
百度学术
A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration.
原文链接
谷歌学术
必应学术
百度学术
Fast Learning for Renewal Optimization in Online Task Scheduling.
原文链接
谷歌学术
必应学术
百度学术
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime.
原文链接
谷歌学术
必应学术
百度学术
Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures.
原文链接
谷歌学术
必应学术
百度学术
Improving Reproducibility in Machine Learning Research(A Report from the NeurIPS 2019 Reproducibility Program).
原文链接
谷歌学术
必应学术
百度学术
Strong Consistency, Graph Laplacians, and the Stochastic Block Model.
原文链接
谷歌学术
必应学术
百度学术
Online stochastic gradient descent on non-convex losses from high-dimensional inference.
原文链接
谷歌学术
必应学术
百度学术
Domain Generalization by Marginal Transfer Learning.
原文链接
谷歌学术
必应学术
百度学术
Stochastic Proximal AUC Maximization.
原文链接
谷歌学术
必应学术
百度学术
On the Riemannian Search for Eigenvector Computation.
原文链接
谷歌学术
必应学术
百度学术
Hoeffding's Inequality for General Markov Chains and Its Applications to Statistical Learning.
原文链接
谷歌学术
必应学术
百度学术
Attention is Turing-Complete.
原文链接
谷歌学术
必应学术
百度学术
A Fast Globally Linearly Convergent Algorithm for the Computation of Wasserstein Barycenters.
原文链接
谷歌学术
必应学术
百度学术
Hyperparameter Optimization via Sequential Uniform Designs.
原文链接
谷歌学术
必应学术
百度学术
Graph Matching with Partially-Correct Seeds.
原文链接
谷歌学术
必应学术
百度学术
Sparse Tensor Additive Regression.
原文链接
谷歌学术
必应学术
百度学术
Factorization Machines with Regularization for Sparse Feature Interactions.
原文链接
谷歌学术
必应学术
百度学术
How to Gain on Power: Novel Conditional Independence Tests Based on Short Expansion of Conditional Mutual Information.
原文链接
谷歌学术
必应学术
百度学术
Integrative High Dimensional Multiple Testing with Heterogeneity under Data Sharing Constraints.
原文链接
谷歌学术
必应学术
百度学术
Edge Sampling Using Local Network Information.
原文链接
谷歌学术
必应学术
百度学术
Mixing Time of Metropolis-Hastings for Bayesian Community Detection.
原文链接
谷歌学术
必应学术
百度学术
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction.
原文链接
谷歌学术
必应学术
百度学术
Method of Contraction-Expansion (MOCE) for Simultaneous Inference in Linear Models.
原文链接
谷歌学术
必应学术
百度学术
Convex Geometry and Duality of Over-parameterized Neural Networks.
原文链接
谷歌学术
必应学术
百度学术
Inference for the Case Probability in High-dimensional Logistic Regression.
原文链接
谷歌学术
必应学术
百度学术
Representer Theorems in Banach Spaces: Minimum Norm Interpolation, Regularized Learning and Semi-Discrete Inverse Problems.
原文链接
谷歌学术
必应学术
百度学术
What Causes the Test Error? Going Beyond Bias-Variance via ANOVA.
原文链接
谷歌学术
必应学术
百度学术
Dynamic Tensor Recommender Systems.
原文链接
谷歌学术
必应学术
百度学术
Towards a Unified Analysis of Random Fourier Features.
原文链接
谷歌学术
必应学术
百度学术
A Bayesian Contiguous Partitioning Method for Learning Clustered Latent Variables.
原文链接
谷歌学术
必应学术
百度学术