1532-4435
Volume 19, 2018
DALEX: Explainers for Complex Predictive Models in R.

Przemyslaw Biecek

Seglearn: A Python Package for Learning Sequences and Time Series.

David M. Burns Cari M. Whyne

Clustering is semidefinitely not that hard: Nonnegative SDP for manifold disentangling.

Mariano Tepper Anirvan M. Sengupta Dmitri B. Chklovskii

Improved Asynchronous Parallel Optimization Analysis for Stochastic Incremental Methods.

Rémi Leblond Fabian Pedregosa Simon Lacoste-Julien

Robust PCA by Manifold Optimization.

Teng Zhang Yi Yang

A Random Matrix Analysis and Improvement of Semi-Supervised Learning for Large Dimensional Data.

Xiaoyi Mai

Online Bootstrap Confidence Intervals for the Stochastic Gradient Descent Estimator.

Yixin Fang Jinfeng Xu Lei Yang

A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation.

Karl Rohe Jun Tao Xintian Han Norbert Binkiewicz

Using Side Information to Reliably Learn Low-Rank Matrices from Missing and Corrupted Observations.

Kai-Yang Chiang Inderjit S. Dhillon Cho-Jui Hsieh

Sparse Estimation in Ising Model via Penalized Monte Carlo Methods.

Blazej Miasojedow Wojciech Rejchel

An efficient distributed learning algorithm based on effective local functional approximations.

Dhruv Mahajan Nikunj Agrawal S. Sathiya Keerthi Sundararajan Sellamanickam Léon Bottou

Optimal Bounds for Johnson-Lindenstrauss Transformations.

Michael A. Burr Shuhong Gao Fiona Knoll

Scikit-Multiflow: A Multi-output Streaming Framework.

Jacob Montiel Jesse Read Albert Bifet Talel Abdessalem

Optimal Quantum Sample Complexity of Learning Algorithms.

Srinivasan Arunachalam Ronald de Wolf

The Implicit Bias of Gradient Descent on Separable Data.

Daniel Soudry Elad Hoffer Mor Shpigel Nacson Suriya Gunasekar Nathan Srebro

Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling.

Adrian Sosic Elmar Rueckert Jan Peters Abdelhak M. Zoubir Heinz Koeppl

Multivariate Bayesian Structural Time Series Model.

Jinwen Qiu S. Rao Jammalamadaka Ning Ning

Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes.

Christian Donner Manfred Opper

Inference via Low-Dimensional Couplings.

Alessio Spantini Daniele Bigoni Youssef M. Marzouk

Extrapolating Expected Accuracies for Large Multi-Class Problems.

Charles Y. Zheng Rakesh Achanta Yuval Benjamini

Scaling up Data Augmentation MCMC via Calibration.

Leo L. Duan James E. Johndrow David B. Dunson

Short-term Sparse Portfolio Optimization Based on Alternating Direction Method of Multipliers.

Zhao-Rong Lai Pei-Yi Yang Liangda Fang Xiaotian Wu

Hinge-Minimax Learner for the Ensemble of Hyperplanes.

Dolev Raviv Tamir Hazan Margarita Osadchy

Simple Classification Using Binary Data.

Deanna Needell Rayan Saab Tina Woolf

A New and Flexible Approach to the Analysis of Paired Comparison Data.

Ivo F. D. Oliveira Nir Ailon Ori Davidov

Maximum Selection and Sorting with Adversarial Comparators.

Jayadev Acharya Moein Falahatgar Ashkan Jafarpour Alon Orlitsky Ananda Theertha Suresh

Theoretical Analysis of Cross-Validation for Estimating the Risk of the $k$-Nearest Neighbor Classifier.

Alain Celisse Tristan Mary-Huard

On Semiparametric Exponential Family Graphical Models.

Zhuoran Yang Yang Ning Han Liu

Modular Proximal Optimization for Multidimensional Total-Variation Regularization.

Álvaro Barbero Jiménez Suvrit Sra

Fast MCMC Sampling Algorithms on Polytopes.

Yuansi Chen Raaz Dwivedi Martin J. Wainwright Bin Yu

How Deep Are Deep Gaussian Processes?

Matthew M. Dunlop Mark A. Girolami Andrew M. Stuart Aretha L. Teckentrup

Profile-Based Bandit with Unknown Profiles.

Sylvain Lamprier Thibault Gisselbrecht Patrick Gallinari

Accelerating Cross-Validation in Multinomial Logistic Regression with $\ell_1$-Regularization.

Tomoyuki Obuchi Yoshiyuki Kabashima

Covariances, Robustness, and Variational Bayes.

Ryan Giordano Tamara Broderick Michael I. Jordan

Emergence of Invariance and Disentanglement in Deep Representations.

Alessandro Achille Stefano Soatto

Design and Analysis of the NIPS 2016 Review Process.

Nihar B. Shah Behzad Tabibian Krikamol Muandet Isabelle Guyon Ulrike von Luxburg

On Generalized Bellman Equations and Temporal-Difference Learning.

Huizhen Yu Ashique Rupam Mahmood Richard S. Sutton

Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery.

Christian Kümmerle Juliane Sigl

On Tight Bounds for the Lasso.

Sara A. van de Geer

Random Forests, Decision Trees, and Categorical Predictors: The "Absent Levels" Problem.

Timothy C. Au

Kernel Distribution Embeddings: Universal Kernels, Characteristic Kernels and Kernel Metrics on Distributions.

Carl-Johann Simon-Gabriel Bernhard Schölkopf

Markov Blanket and Markov Boundary of Multiple Variables.

Xu-Qing Liu Xin-sheng Liu

An Efficient and Effective Generic Agglomerative Hierarchical Clustering Approach.

Julien Ah-Pine

Connections with Robust PCA and the Role of Emergent Sparsity in Variational Autoencoder Models.

Bin Dai Yu Wang John Aston Gang Hua David P. Wipf

Learning from Comparisons and Choices.

Sahand Negahban Sewoong Oh Kiran Koshy Thekumparampil Jiaming Xu

State-by-state Minimax Adaptive Estimation for Nonparametric Hidden Markov Models.

Luc Lehéricy

Local Rademacher Complexity-based Learning Guarantees for Multi-Task Learning.

Niloofar Yousefi Yunwen Lei Marius Kloft Mansooreh Mollaghasemi Georgios C. Anagnostopoulos

The xyz algorithm for fast interaction search in high-dimensional data.

Gian-Andrea Thanei Nicolai Meinshausen Rajen Dinesh Shah

Invariant Models for Causal Transfer Learning.

Mateo Rojas-Carulla Bernhard Schölkopf Richard E. Turner Jonas Peters

Kernel Density Estimation for Dynamical Systems.

Hanyuan Hang Ingo Steinwart Yunlong Feng Johan A. K. Suykens

A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms.

Bhavya Kailkhura Jayaraman J. Thiagarajan Charvi Rastogi Pramod K. Varshney Peer-Timo Bremer

Goodness-of-Fit Tests for Random Partitions via Symmetric Polynomials.

Chao Gao

Distribution-Specific Hardness of Learning Neural Networks.

Ohad Shamir

A Direct Approach for Sparse Quadratic Discriminant Analysis.

Binyan Jiang Xiangyu Wang Chenlei Leng

Parallelizing Spectrally Regularized Kernel Algorithms.

Nicole Mücke Gilles Blanchard

Gradient Descent Learns Linear Dynamical Systems.

Moritz Hardt Tengyu Ma Benjamin Recht

Generalized Rank-Breaking: Computational and Statistical Tradeoffs.

Ashish Khetan Sewoong Oh

Importance Sampling for Minibatches.

Dominik Csiba Peter Richtárik

OpenEnsembles: A Python Resource for Ensemble Clustering.

Tom Ronan Shawn Anastasio Zhijie Qi Pedro Henrique S. Vieira Tavares Roman Sloutsky Kristen M. Naegle

Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations.

Maziar Raissi

Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems.

Lyudmila Grigoryeva Juan-Pablo Ortega

Reverse Iterative Volume Sampling for Linear Regression.

Michal Derezinski Manfred K. Warmuth

Robust Synthetic Control.

Muhammad J. Amjad Devavrat Shah Dennis Shen

ThunderSVM: A Fast SVM Library on GPUs and CPUs.

Zeyi Wen Jiashuai Shi Qinbin Li Bingsheng He Jian Chen

Refining the Confidence Level for Optimistic Bandit Strategies.

Tor Lattimore

Distributed Proximal Gradient Algorithm for Partially Asynchronous Computer Clusters.

Yi Zhou Yingbin Liang Yaoliang Yu Wei Dai Eric P. Xing

Dual Principal Component Pursuit.

Manolis C. Tsakiris René Vidal

Streaming kernel regression with provably adaptive mean, variance, and regularization.

Audrey Durand Odalric-Ambrym Maillard Joelle Pineau

ELFI: Engine for Likelihood-Free Inference.

Jarno Lintusaari Henri Vuollekoski Antti Kangasrääsiö Kusti Skytén Marko Järvenpää Pekka Marttinen Michael U. Gutmann Aki Vehtari Jukka Corander Samuel Kaski

Regularized Optimal Transport and the Rot Mover's Distance.

Arnaud Dessein Nicolas Papadakis Jean-Luc Rouas

Model-Free Trajectory-based Policy Optimization with Monotonic Improvement.

Riad Akrour Abbas Abdolmaleki Hany Abdulsamad Jan Peters Gerhard Neumann

A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization.

Ruidi Chen Ioannis Ch. Paschalidis

Statistical Analysis and Parameter Selection for Mapper.

Mathieu Carrière Bertrand Michel Steve Oudot

Change-Point Computation for Large Graphical Models: A Scalable Algorithm for Gaussian Graphical Models with Change-Points.

Leland Bybee Yves Atchadé

A Constructive Approach to $L_0$ Penalized Regression.

Jian Huang Yuling Jiao Yanyan Liu Xiliang Lu

Experience Selection in Deep Reinforcement Learning for Control.

Tim de Bruin Jens Kober Karl Tuyls Robert Babuska

Scalable Bayes via Barycenter in Wasserstein Space.

Sanvesh Srivastava Cheng Li David B. Dunson

Patchwork Kriging for Large-scale Gaussian Process Regression.

Chiwoo Park Daniel W. Apley

RSG: Beating Subgradient Method without Smoothness and Strong Convexity.

Tianbao Yang Qihang Lin

Can We Trust the Bootstrap in High-dimensions? The Case of Linear Models.

Noureddine El Karoui Elizabeth Purdom

A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference.

Ahmed M. Alaa Mihaela van der Schaar

Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection.

Abhimanyu Das David Kempe

A Two-Stage Penalized Least Squares Method for Constructing Large Systems of Structural Equations.

Chen Chen Min Ren Min Zhang Dabao Zhang

Numerical Analysis near Singularities in RBF Networks.

Weili Guo Haikun Wei Yew-Soon Ong Jaime Rubio Hervas Junsheng Zhao Hai Wang Kanjian Zhang