1532-4435
Volume 20, 2019
Why do deep convolutional networks generalize so poorly to small image transformations?

Aharon Azulay Yair Weiss

Log-concave sampling: Metropolis-Hastings algorithms are fast.

Raaz Dwivedi Yuansi Chen Martin J. Wainwright Bin Yu

Model Selection in Bayesian Neural Networks via Horseshoe Priors.

Soumya Ghosh Jiayu Yao Finale Doshi-Velez

Neural Empirical Bayes.

Saeed Saremi Aapo Hyvärinen

DPPy: DPP Sampling with Python.

Guillaume Gautier Guillermo Polito Rémi Bardenet Michal Valko

Differentiable reservoir computing.

Lyudmila Grigoryeva Juan-Pablo Ortega

Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning.

Daniel Coelho de Castro Jeremy Tan Bernhard Kainz Ender Konukoglu Ben Glocker

All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously.

Aaron Fisher Cynthia Rudin Francesca Dominici

New Convergence Aspects of Stochastic Gradient Algorithms.

Lam M. Nguyen Phuong Ha Nguyen Peter Richtárik Katya Scheinberg Martin Takác Marten van Dijk

DataWig: Missing Value Imputation for Tables.

Felix Bießmann Tammo Rukat Philipp Schmidt Prathik Naidu Sebastian Schelter Andrey Taptunov Dustin Lange David Salinas

Learning Overcomplete, Low Coherence Dictionaries with Linear Inference.

Jesse A. Livezey Alejandro F. Bujan Friedrich T. Sommer

Fast Automatic Smoothing for Generalized Additive Models.

Yousra El-Bachir Anthony C. Davison

Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals.

Andrew Cotter Heinrich Jiang Maya R. Gupta Serena Wang Taman Narayan Seungil You Karthik Sridharan

Shared Subspace Models for Multi-Group Covariance Estimation.

Alexander M. Franks Peter Hoff

DBSCAN: Optimal Rates For Density-Based Cluster Estimation.

Daren Wang Xinyang Lu Alessandro Rinaldo

Embarrassingly Parallel Inference for Gaussian Processes.

Michael Minyi Zhang Sinead A. Williamson

Determinantal Point Processes for Coresets.

Nicolas Tremblay Simon Barthelmé Pierre-Olivier Amblard

Stochastic Canonical Correlation Analysis.

Chao Gao Dan Garber Nathan Srebro Jialei Wang Weiran Wang

Unsupervised Evaluation and Weighted Aggregation of Ranked Classification Predictions.

Mehmet Eren Ahsen Robert M. Vogel Gustavo A. Stolovitzky

On the Convergence of Gaussian Belief Propagation with Nodes of Arbitrary Size.

Francois Kamper Sarel Steel Johan A. du Preez

The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks.

Arjun Sondhi Ali Shojaie

Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets.

Jie Wang Zhanqiu Zhang Jieping Ye

A Kernel Multiple Change-point Algorithm via Model Selection.

Sylvain Arlot Alain Celisse Zaïd Harchaoui

Sparse Kernel Regression with Coefficient-based $\ell_q-$regularization.

Lei Shi Xiaolin Huang Yunlong Feng Johan A. K. Suykens

Learning by Unsupervised Nonlinear Diffusion.

Mauro Maggioni James M. Murphy

Optimal Convergence Rates for Convex Distributed Optimization in Networks.

Kevin Scaman Francis R. Bach Sébastien Bubeck Yin Tat Lee Laurent Massoulié

GraSPy: Graph Statistics in Python.

Jaewon Chung Benjamin D. Pedigo Eric W. Bridgeford Bijan K. Varjavand Hayden S. Helm Joshua T. Vogelstein

Simultaneous Phase Retrieval and Blind Deconvolution via Convex Programming.

Ali Ahmed Alireza Aghasi Paul Hand

SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition.

Yuntao Chen Chenxia Han Yanghao Li Zehao Huang Yi Jiang Naiyan Wang Zhaoxiang Zhang

Quantifying Uncertainty in Online Regression Forests.

Theodore Vasiloudis Gianmarco De Francisci Morales Henrik Boström

Convergence Guarantees for a Class of Non-convex and Non-smooth Optimization Problems.

Koulik Khamaru Martin J. Wainwright

Approximation Algorithms for Stochastic Clustering.

David G. Harris Shi Li Thomas W. Pensyl Aravind Srinivasan Khoa Trinh

High-dimensional Varying Index Coefficient Models via Stein's Identity.

Sen Na Zhuoran Yang Zhaoran Wang Mladen Kolar

Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams.

Vasileios Maroulas Joshua L. Mike Christopher Oballe

Learning Optimized Risk Scores.

Berk Ustun Cynthia Rudin

On Asymptotic and Finite-Time Optimality of Bayesian Predictors.

Daniil Ryabko

Collective Matrix Completion.

Mokhtar Z. Alaya Olga Klopp

Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise.

Niklas Pfister Sebastian Weichwald Peter Bühlmann Bernhard Schölkopf

Characterizing the Sample Complexity of Pure Private Learners.

Amos Beimel Kobbi Nissim Uri Stemmer

Bayesian Optimization for Policy Search via Online-Offline Experimentation.

Benjamin Letham Eytan Bakshy

Convergence of Gaussian Belief Propagation Under General Pairwise Factorization: Connecting Gaussian MRF with Pairwise Linear Gaussian Model.

Bin Li Yik-Chung Wu

Minimal Sample Subspace Learning: Theory and Algorithms.

Zhenyue Zhang Yuqing Xia

Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA.

Ji Chen Xiaodong Li

Provably Accurate Double-Sparse Coding.

Thanh V. Nguyen Raymond K. W. Wong Chinmay Hegde

Nonparametric Bayesian Aggregation for Massive Data.

Zuofeng Shang Botao Hao Guang Cheng

Decentralized Dictionary Learning Over Time-Varying Digraphs.

Amir Daneshmand Ying Sun Gesualdo Scutari Francisco Facchinei Brian M. Sadler

Generalized Maximum Entropy Estimation.

Tobias Sutter David Sutter Peyman Mohajerin Esfahani John Lygeros

Multiclass Boosting: Margins, Codewords, Losses, and Algorithms.

Mohammad J. Saberian Nuno Vasconcelos

Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis.

Nicolás García Trillos Daniel Sanz-Alonso Ruiyi Yang

Gaussian Processes with Linear Operator Inequality Constraints.

Christian Agrell

Stochastic Variance-Reduced Cubic Regularization Methods.

Dongruo Zhou Pan Xu Quanquan Gu

Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes.

Luca Venturi Afonso S. Bandeira Joan Bruna

More Efficient Estimation for Logistic Regression with Optimal Subsamples.

HaiYing Wang

Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model.

Sophie Burkhardt Stefan Kramer

Logical Explanations for Deep Relational Machines Using Relevance Information.

Ashwin Srinivasan Lovekesh Vig Michael Bain

Time-to-Event Prediction with Neural Networks and Cox Regression.

Håvard Kvamme Ørnulf Borgan Ida Scheel

Unsupervised Basis Function Adaptation for Reinforcement Learning.

Edward Barker Charl J. Ras

Causal Learning via Manifold Regularization.

Steven M. Hill Chris J. Oates Duncan A. J. Blythe Sach Mukherjee

Learning Representations of Persistence Barcodes.

Christoph D. Hofer Roland Kwitt Marc Niethammer

ORCA: A Matlab/Octave Toolbox for Ordinal Regression.

Javier Sánchez-Monedero Pedro Antonio Gutiérrez María Pérez-Ortiz

Deep Exploration via Randomized Value Functions.

Ian Osband Benjamin Van Roy Daniel J. Russo Zheng Wen

ADMMBO: Bayesian Optimization with Unknown Constraints using ADMM.

Setareh Ariafar Jaume Coll-Font Dana H. Brooks Jennifer G. Dy

Approximate Profile Maximum Likelihood.

Dmitri S. Pavlichin Jiantao Jiao Tsachy Weissman

Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction.

Bin Hong Weizhong Zhang Wei Liu Jieping Ye Deng Cai Xiaofei He Jie Wang

Ivanov-Regularised Least-Squares Estimators over Large RKHSs and Their Interpolation Spaces.

Stephen Page Steffen Grünewälder

Layer-Wise Learning Strategy for Nonparametric Tensor Product Smoothing Spline Regression and Graphical Models.

Kean Ming Tan Junwei Lu Tong Zhang Han Liu

Binarsity: a penalization for one-hot encoded features in linear supervised learning.

Mokhtar Z. Alaya Simon Bussy Stéphane Gaïffas Agathe Guilloux

Generic Inference in Latent Gaussian Process Models.

Edwin V. Bonilla Karl Krauth Amir Dezfouli

Graph Reduction with Spectral and Cut Guarantees.

Andreas Loukas

Learning Attribute Patterns in High-Dimensional Structured Latent Attribute Models.

Yuqi Gu Gongjun Xu

Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery.

Richard Y. Zhang Somayeh Sojoudi Javad Lavaei

Distributed Inference for Linear Support Vector Machine.

Xiaozhou Wang Zhuoyi Yang Xi Chen Weidong Liu

Measuring the Effects of Data Parallelism on Neural Network Training.

Christopher J. Shallue Jaehoon Lee Joseph M. Antognini Jascha Sohl-Dickstein Roy Frostig George E. Dahl

An Efficient Two Step Algorithm for High Dimensional Change Point Regression Models Without Grid Search.

Abhishek Kaul Venkata K. Jandhyala Stergios B. Fotopoulos

A Representer Theorem for Deep Neural Networks.

Michael Unser

Learning Unfaithful $K$-separable Gaussian Graphical Models.

De Wen Soh Sekhar Tatikonda

Maximum Likelihood for Gaussian Process Classification and Generalized Linear Mixed Models under Case-Control Sampling.

Omer Weissbrod Shachar Kaufman David Golan Saharon Rosset

Scalable Interpretable Multi-Response Regression via SEED.

Zemin Zheng Mohammad Taha Bahadori Yan Liu Jinchi Lv

Solving the OSCAR and SLOPE Models Using a Semismooth Newton-Based Augmented Lagrangian Method.

Ziyan Luo Defeng Sun Kim-Chuan Toh Naihua Xiu

Optimal Transport: Fast Probabilistic Approximation with Exact Solvers.

Max Sommerfeld Jörn Schrieber Yoav Zemel Axel Munk

Complete Search for Feature Selection in Decision Trees.

Salvatore Ruggieri

Regularization via Mass Transportation.

Soroosh Shafieezadeh-Abadeh Daniel Kuhn Peyman Mohajerin Esfahani

Non-Convex Matrix Completion and Related Problems via Strong Duality.

Maria-Florina Balcan Yingyu Liang Zhao Song David P. Woodruff Hongyang Zhang

Low Permutation-rank Matrices: Structural Properties and Noisy Completion.

Nihar B. Shah Sivaraman Balakrishnan Martin J. Wainwright

Hamiltonian Monte Carlo with Energy Conserving Subsampling.

Khue-Dung Dang Matias Quiroz Robert Kohn Minh-Ngoc Tran Mattias Villani

Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction.

William Herlands Daniel B. Neill Hannes Nickisch Andrew Gordon Wilson

Adaptive Geometric Multiscale Approximations for Intrinsically Low-dimensional Data.

Wenjing Liao Mauro Maggioni

Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion.

Lijun Zhang Tianbao Yang Rong Jin Zhi-Hua Zhou

PyOD: A Python Toolbox for Scalable Outlier Detection.

Yue Zhao Zain Nasrullah Zheng Li

High-Dimensional Poisson Structural Equation Model Learning via $\ell_1$-Regularized Regression.

Gunwoong Park Sion Park

Simultaneous Private Learning of Multiple Concepts.

Mark Bun Kobbi Nissim Uri Stemmer

iNNvestigate Neural Networks!

Maximilian Alber Sebastian Lapuschkin Philipp Seegerer Miriam Hägele Kristof T. Schütt Grégoire Montavon Wojciech Samek Klaus-Robert Müller Sven Dähne Pieter-Jan Kindermans

AffectiveTweets: a Weka Package for Analyzing Affect in Tweets.

Felipe Bravo-Marquez Eibe Frank Bernhard Pfahringer Saif M. Mohammad

Best Arm Identification for Contaminated Bandits.

Jason Altschuler Victor-Emmanuel Brunel Alan Malek

A Particle-Based Variational Approach to Bayesian Non-negative Matrix Factorization.

Muhammad A. Masood Finale Doshi-Velez

Dependent relevance determination for smooth and structured sparse regression.

Anqi Wu Oluwasanmi Koyejo Jonathan W. Pillow

Model Selection via the VC Dimension.

Merlin Mpoudeu Bertrand S. Clarke

An asymptotic analysis of distributed nonparametric methods.

Botond Szabó Harry van Zanten

Streaming Principal Component Analysis From Incomplete Data.

Armin Eftekhari Gregory Ongie Laura Balzano Michael B. Wakin

Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees.

Leonardo Vilela Teixeira Renato M. Assunção Rosangela Helena Loschi

Differentiable Game Mechanics.

Alistair Letcher David Balduzzi Sébastien Racanière James Martens Jakob N. Foerster Karl Tuyls Thore Graepel

On the optimality of the Hedge algorithm in the stochastic regime.

Jaouad Mourtada Stéphane Gaïffas

SMART: An Open Source Data Labeling Platform for Supervised Learning.

Rob Chew Michael Wenger Caroline Kery Jason Nance Keith Richards Emily Hadley Peter Baumgartner

Tight Lower Bounds on the VC-dimension of Geometric Set Systems.

Mónika Csikós Nabil H. Mustafa Andrey Kupavskii

Learning to Match via Inverse Optimal Transport.

Ruilin Li Xiaojing Ye Haomin Zhou Hongyuan Zha

Quantification Under Prior Probability Shift: the Ratio Estimator and its Extensions.

Afonso Fernandes Vaz Rafael Izbicki Rafael Bassi Stern

Prediction Risk for the Horseshoe Regression.

Anindya Bhadra Jyotishka Datta Yunfan Li Nicholas G. Polson Brandon T. Willard

Nonuniformity of P-values Can Occur Early in Diverging Dimensions.

Yingying Fan Emre Demirkaya Jinchi Lv

Generalized Score Matching for Non-Negative Data.

Shiqing Yu Mathias Drton Ali Shojaie

Fairness Constraints: A Flexible Approach for Fair Classification.

Muhammad Bilal Zafar Isabel Valera Manuel Gomez-Rodriguez Krishna P. Gummadi

Deep Optimal Stopping.

Sebastian Becker Patrick Cheridito Arnulf Jentzen

Analysis of Langevin Monte Carlo via Convex Optimization.

Alain Durmus Szymon Majewski Blazej Miasojedow

Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning.

Can Karakus Yifan Sun Suhas N. Diggavi Wotao Yin

Lazifying Conditional Gradient Algorithms.

Gábor Braun Sebastian Pokutta Daniel Zink

Semi-Analytic Resampling in Lasso.

Tomoyuki Obuchi Yoshiyuki Kabashima

On Consistent Vertex Nomination Schemes.

Vince Lyzinski Keith Levin Carey E. Priebe

Variance-based Regularization with Convex Objectives.

John C. Duchi Hongseok Namkoong

Learnability of Solutions to Conjunctive Queries.

Hubie Chen Matthew Valeriote

Proximal Distance Algorithms: Theory and Practice.

Kevin L. Keys Hua Zhou Kenneth Lange

Active Learning for Cost-Sensitive Classification.

Akshay Krishnamurthy Alekh Agarwal Tzu-Kuo Huang Hal Daumé III John Langford

A Representer Theorem for Deep Kernel Learning.

Bastian Bohn Christian Rieger Michael Griebel

Nearly-tight VC-dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks.

Peter L. Bartlett Nick Harvey Christopher Liaw Abbas Mehrabian

Multi-scale Online Learning: Theory and Applications to Online Auctions and Pricing.

Sébastien Bubeck Nikhil R. Devanur Zhiyi Huang Rad Niazadeh

The Sup-norm Perturbation of HOSVD and Low Rank Tensor Denoising.

Dong Xia Fan Zhou

Robust Estimation of Derivatives Using Locally Weighted Least Absolute Deviation Regression.

Wenwu Wang Ping Yu Lu Lin Tiejun Tong

Kernel Approximation Methods for Speech Recognition.

Avner May Alireza Bagheri Garakani Zhiyun Lu Dong Guo Kuan Liu Aurélien Bellet Linxi Fan Michael Collins Daniel Hsu Brian Kingsbury Michael Picheny Fei Sha

The Common-directions Method for Regularized Empirical Risk Minimization.

Po-Wei Wang Ching-Pei Lee Chih-Jen Lin

Multi-class Heterogeneous Domain Adaptation.

Joey Tianyi Zhou Ivor W. Tsang Sinno Jialin Pan Mingkui Tan

Near Optimal Frequent Directions for Sketching Dense and Sparse Matrices.

Zengfeng Huang

Neural Architecture Search: A Survey.

Thomas Elsken Jan Hendrik Metzen Frank Hutter

Deep Reinforcement Learning for Swarm Systems.

Maximilian Hüttenrauch Adrian Sosic Gerhard Neumann

Tunability: Importance of Hyperparameters of Machine Learning Algorithms.

Philipp Probst Anne-Laure Boulesteix Bernd Bischl

Thompson Sampling Guided Stochastic Searching on the Line for Deceptive Environments with Applications to Root-Finding Problems.

Sondre Glimsdal Ole-Christoffer Granmo

Bayesian Combination of Probabilistic Classifiers using Multivariate Normal Mixtures.

Gregor Pirs Erik Strumbelj

No-Regret Bayesian Optimization with Unknown Hyperparameters.

Felix Berkenkamp Angela P. Schoellig Andreas Krause

Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots.

Akshara Rai Rika Antonova Franziska Meier Christopher G. Atkeson

Efficient augmentation and relaxation learning for individualized treatment rules using observational data.

Ying-Qi Zhao Eric B. Laber Yang Ning Sumona Saha Bruce E. Sands

Analysis of spectral clustering algorithms for community detection: the general bipartite setting.

Zhixin Zhou Arash A. Amini

Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping.

Shao-Bo Lin Yunwen Lei Ding-Xuan Zhou

Robust Frequent Directions with Application in Online Learning.

Luo Luo Cheng Chen Zhihua Zhang Wu-Jun Li Tong Zhang

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python.

Jason Ge Xingguo Li Haoming Jiang Han Liu Tong Zhang Mengdi Wang Tuo Zhao

DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization.

Lin Xiao Adams Wei Yu Qihang Lin Weizhu Chen

Utilizing Second Order Information in Minibatch Stochastic Variance Reduced Proximal Iterations.

Jialei Wang Tong Zhang

Decontamination of Mutual Contamination Models.

Julian Katz-Samuels Gilles Blanchard Clayton Scott

Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations.

Qianxiao Li Cheng Tai Weinan E

A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication.

Miles E. Lopes Shusen Wang Michael W. Mahoney

Approximation Hardness for A Class of Sparse Optimization Problems.

Yichen Chen Yinyu Ye Mengdi Wang

A Well-Tempered Landscape for Non-convex Robust Subspace Recovery.

Tyler Maunu Teng Zhang Gilad Lerman

A New Approach to Laplacian Solvers and Flow Problems.

Patrick Rebeschini Sekhar Tatikonda

Optimal Policies for Observing Time Series and Related Restless Bandit Problems.

Christopher R. Dance Tomi Silander

Matched Bipartite Block Model with Covariates.

Zahra S. Razaee Arash A. Amini Jingyi Jessica Li

The Relationship Between Agnostic Selective Classification, Active Learning and the Disagreement Coefficient.

Roei Gelbhart Ran El-Yaniv

NetSDM: Semantic Data Mining with Network Analysis.

Jan Kralj Marko Robnik-Sikonja Nada Lavrac

Kernels for Sequentially Ordered Data.

Franz J. Király Harald Oberhauser

Exact Clustering of Weighted Graphs via Semidefinite Programming.

Aleksis Pirinen Brendan Ames

Iterated Learning in Dynamic Social Networks.

Bernard Chazelle Chu Wang

Pyro: Deep Universal Probabilistic Programming.

Eli Bingham Jonathan P. Chen Martin Jankowiak Fritz Obermeyer Neeraj Pradhan Theofanis Karaletsos Rohit Singh Paul A. Szerlip Paul Horsfall Noah D. Goodman

Monotone Learning with Rectified Wire Networks.

Veit Elser Dan Schmidt Jonathan S. Yedidia

TensorLy: Tensor Learning in Python.

Jean Kossaifi Yannis Panagakis Anima Anandkumar Maja Pantic

Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations.

Alberto Bietti Julien Mairal

Joint PLDA for Simultaneous Modeling of Two Factors.

Luciana Ferrer Mitchell McLaren

Determining the Number of Latent Factors in Statistical Multi-Relational Learning.

Chengchun Shi Wenbin Lu Rui Song

Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics.

Yanning Shen Tianyi Chen Georgios B. Giannakis

Spectrum Estimation from a Few Entries.

Ashish Khetan Sewoong Oh

Accelerated Alternating Projections for Robust Principal Component Analysis.

HanQin Cai Jian-Feng Cai Ke Wei

spark-crowd: A Spark Package for Learning from Crowdsourced Big Data.

Enrique González Rodrigo Juan A. Aledo José A. Gámez

Multiplicative local linear hazard estimation and best one-sided cross-validation.

María Luz Gámiz Pérez María Dolores Martínez Miranda Jens Perch Nielsen

Delay and Cooperation in Nonstochastic Bandits.

Nicolò Cesa-Bianchi Claudio Gentile Yishay Mansour

Smooth neighborhood recommender systems.

Ben Dai Junhui Wang Xiaotong Shen Annie Qu

Automated Scalable Bayesian Inference via Hilbert Coresets.

Trevor Campbell Tamara Broderick

Approximations of the Restless Bandit Problem.

Steffen Grünewälder Azadeh Khaleghi

Train and Test Tightness of LP Relaxations in Structured Prediction.

Ofer Meshi Ben London Adrian Weller David A. Sontag

Scalable Kernel K-Means Clustering with Nystr\"om Approximation: Relative-Error Bounds.

Shusen Wang Alex Gittens Michael W. Mahoney

An Approach to One-Bit Compressed Sensing Based on Probably Approximately Correct Learning Theory.

Mehmet Eren Ahsen Mathukumalli Vidyasagar

Graphical Lasso and Thresholding: Equivalence and Closed-form Solutions.

Salar Fattahi Somayeh Sojoudi

Dynamic Pricing in High-dimensions.

Adel Javanmard Hamid Nazerzadeh

Forward-Backward Selection with Early Dropping.

Giorgos Borboudakis Ioannis Tsamardinos

Scalable Approximations for Generalized Linear Problems.

Murat A. Erdogdu Mohsen Bayati Lee H. Dicker

scikit-multilearn: A Python library for Multi-Label Classification.

Piotr Szymanski Tomasz Kajdanowicz

Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression.

Han Chen Garvesh Raskutti Ming Yuan

Convergence Rate of a Simulated Annealing Algorithm with Noisy Observations.

Clément Bouttier Ioana Gavra

Parsimonious Online Learning with Kernels via Sparse Projections in Function Space.

Alec Koppel Garrett Warnell Ethan Stump Alejandro Ribeiro

Transport Analysis of Infinitely Deep Neural Network.

Sho Sonoda Noboru Murata

Adaptation Based on Generalized Discrepancy.

Corinna Cortes Mehryar Mohri Andrés Muñoz Medina