A personalized recommendation procedure for Internet shopping support

作者:

Highlights:

摘要

The rapid growth of e-commerce has caused product overload where the customer is no longer able to effectively choose the products he/she is exposed to. To overcome the product overload of Internet shoppers, several recommender systems have been developed. Recommendation systems track past actions of a group of customers to make a recommendation to individual members of the group. We introduce a personalized recommendation procedure by which we can get further recommendation effectiveness when applied to Internet shopping malls. The suggested procedure is based on Web usage mining, product taxonomy, association rule mining, and decision tree induction. We applied the procedure to a leading Internet shopping mall in Korea for performance evaluation, and some experimental results are provided. The experimental results show that choosing the right level of product taxonomy and the right customers increases the quality of recommendations.

论文关键词:Product recommendation,Personalization,Association rule mining,Web usage mining,Decision tree

论文评审过程:Available online 3 December 2002.

论文官网地址:https://doi.org/10.1016/S1567-4223(02)00022-4