A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis

作者:

Highlights:

摘要

Many online shopping malls in which explicit rating information is not available still have difficulty in providing recommendation services using collaborative filtering (CF) techniques for their users. Applying temporal purchase patterns derived from sequential pattern analysis (SPA) for recommendation services also often makes users unhappy with the inaccurate and biased results obtained by not considering individual preferences. The objective of this research is twofold. One is to derive implicit ratings so that CF can be applied to online transaction data even when no explicit rating information is available, and the other is to integrate CF and SPA for improving recommendation quality. Based on the results of several experiments that we conducted to compare the performance between ours and others, we contend that implicit rating can successfully replace explicit rating in CF and that the hybrid approach of CF and SPA is better than the individual ones.

论文关键词:Collaborative filtering,Sequential pattern analysis,Implicit rating,Recommendation,Hybrid approach

论文评审过程:Received 19 April 2011, Revised 16 February 2012, Accepted 16 February 2012, Available online 24 February 2012.

论文官网地址:https://doi.org/10.1016/j.elerap.2012.02.004